000179097 001__ 179097
000179097 005__ 20240229145532.0
000179097 0247_ $$2doi$$a10.1002/dvdy.467
000179097 0247_ $$2pmid$$apmid:35266256
000179097 0247_ $$2ISSN$$a0002-9106
000179097 0247_ $$2ISSN$$a1058-8388
000179097 0247_ $$2ISSN$$a1097-0177
000179097 0247_ $$2ISSN$$a1553-0795
000179097 0247_ $$2altmetric$$aaltmetric:124490655
000179097 037__ $$aDKFZ-2022-00462
000179097 041__ $$aEnglish
000179097 082__ $$a610
000179097 1001_ $$aSchultz-Rogers, Laura E$$b0
000179097 245__ $$aRbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis.
000179097 260__ $$aNew York, NY [u.a.]$$bWiley$$c2022
000179097 3367_ $$2DRIVER$$aarticle
000179097 3367_ $$2DataCite$$aOutput Types/Journal article
000179097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674134944_9584
000179097 3367_ $$2BibTeX$$aARTICLE
000179097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179097 3367_ $$00$$2EndNote$$aJournal Article
000179097 500__ $$a2022 Aug;251(8):1267-1290
000179097 520__ $$aRetinoblastoma-binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb and Tp53 in zebrafish neural progenitor cell cycle regulation and survival.Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants Tp53 acetylation is detected, however, Rbbp4 overexpression did not rescue DNA damage induced apoptosis.Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through regulation of Tp53 acetylation. This article is protected by copyright. All rights reserved.
000179097 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000179097 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179097 7001_ $$aThayer, Michelle L$$b1
000179097 7001_ $$aKambakam, Sekhar$$b2
000179097 7001_ $$aWierson, Wesley A$$b3
000179097 7001_ $$aHelmer, Jordan A$$b4
000179097 7001_ $$aWishman, Mark D$$b5
000179097 7001_ $$aWall, Kristen A$$b6
000179097 7001_ $$aGreig, Jessica L$$b7
000179097 7001_ $$aForsman, Jaimie L$$b8
000179097 7001_ $$aPuchhalapalli, Kavya$$b9
000179097 7001_ $$aNair, Siddharth$$b10
000179097 7001_ $$aWeiss, Trevor J$$b11
000179097 7001_ $$aLuiken, Jon M$$b12
000179097 7001_ $$aBlackburn, Patrick R$$b13
000179097 7001_ $$aEkker, Stephen C$$b14
000179097 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b15$$udkfz
000179097 7001_ $$00000-0001-9308-6189$$aMcGrail, Maura$$b16
000179097 773__ $$0PERI:(DE-600)1473797-8$$a10.1002/dvdy.467$$gp. dvdy.467$$n8$$p1267-1290$$tDevelopmental dynamics$$v251$$x0002-9106$$y2022
000179097 909CO $$ooai:inrepo02.dkfz.de:179097$$pVDB
000179097 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b15$$kDKFZ
000179097 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000179097 9141_ $$y2022
000179097 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000179097 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000179097 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000179097 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000179097 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000179097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDEV DYNAM : 2021$$d2022-11-12
000179097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000179097 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000179097 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000179097 980__ $$ajournal
000179097 980__ $$aVDB
000179097 980__ $$aI:(DE-He78)B062-20160331
000179097 980__ $$aI:(DE-He78)HD01-20160331
000179097 980__ $$aUNRESTRICTED