001     179129
005     20240229145533.0
024 7 _ |a 10.1158/1055-9965.EPI-21-0747
|2 doi
024 7 _ |a pmid:35027437
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:120884679
|2 altmetric
037 _ _ |a DKFZ-2022-00486
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schmid, Sabine
|b 0
245 _ _ |a Accounting for EGFR Mutations in Epidemiologic Analyses of Non-Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data.
260 _ _ |a Philadelphia, Pa.
|c 2022
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1647511668_5965
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Somatic EGFR mutations define a subset of non-small cell lung cancers (NSCLC) that have clinical impact on NSCLC risk and outcome. However, EGFR-mutation-status is often missing in epidemiologic datasets. We developed and tested pragmatic approaches to account for EGFR-mutation-status based on variables commonly included in epidemiologic datasets and evaluated the clinical utility of these approaches.Through analysis of the International Lung Cancer Consortium (ILCCO) epidemiologic datasets, we developed a regression model for EGFR-status; we then applied a clinical-restriction approach using the optimal cut-point, and a second epidemiologic, multiple imputation approach to ILCCO survival analyses that did and did not account for EGFR-status.Of 35,356 ILCCO patients with NSCLC, EGFR-mutation-status was available in 4,231 patients. A model regressing known EGFR-mutation-status on clinical and demographic variables achieved a concordance index of 0.75 (95% CI, 0.74-0.77) in the training and 0.77 (95% CI, 0.74-0.79) in the testing dataset. At an optimal cut-point of probability-score = 0.335, sensitivity = 69% and specificity = 72.5% for determining EGFR-wildtype status. In both restriction-based and imputation-based regression analyses of the individual roles of BMI on overall survival of patients with NSCLC, similar results were observed between overall and EGFR-mutation-negative cohort analyses of patients of all ancestries. However, our approach identified some differences: EGFR-mutated Asian patients did not incur a survival benefit from being obese, as observed in EGFR-wildtype Asian patients.We introduce a pragmatic method to evaluate the potential impact of EGFR-status on epidemiological analyses of NSCLC.The proposed method is generalizable in the common occurrence in which EGFR-status data are missing.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Jiang, Mei
|0 0000-0002-7393-2664
|b 1
700 1 _ |a Brown, M Catherine
|b 2
700 1 _ |a Fares, Aline
|b 3
700 1 _ |a Garcia, Miguel
|b 4
700 1 _ |a Soriano, Joelle
|b 5
700 1 _ |a Dong, Mei
|0 0000-0003-1735-5361
|b 6
700 1 _ |a Thomas, Sera
|b 7
700 1 _ |a Kohno, Takashi
|0 0000-0002-5371-706X
|b 8
700 1 _ |a Leal, Leticia Ferro
|b 9
700 1 _ |a Diao, Nancy
|0 0000-0003-1741-0244
|b 10
700 1 _ |a Xie, Juntao
|b 11
700 1 _ |a Wang, Zhichao
|0 0000-0002-0136-1911
|b 12
700 1 _ |a Zaridze, David
|b 13
700 1 _ |a Holcatova, Ivana
|b 14
700 1 _ |a Lissowska, Jolanta
|b 15
700 1 _ |a Świątkowska, Beata
|0 0000-0003-3757-3868
|b 16
700 1 _ |a Mates, Dana
|0 0000-0002-6219-9807
|b 17
700 1 _ |a Savic, Milan
|b 18
700 1 _ |a Wenzlaff, Angela S
|0 0000-0001-8669-8240
|b 19
700 1 _ |a Harris, Curtis C
|b 20
700 1 _ |a Caporaso, Neil E
|b 21
700 1 _ |a Ma, Hongxia
|b 22
700 1 _ |a Fernandez-Tardon, Guillermo
|0 0000-0002-7680-158X
|b 23
700 1 _ |a Barnett, Matthew J
|0 0000-0002-1028-1091
|b 24
700 1 _ |a Goodman, Gary
|b 25
700 1 _ |a Davies, Michael P A
|0 0000-0002-7609-4977
|b 26
700 1 _ |a Pérez-Ríos, Mónica
|b 27
700 1 _ |a Taylor, Fiona
|b 28
700 1 _ |a Duell, Eric J
|0 0000-0001-5256-0163
|b 29
700 1 _ |a Schoettker, Ben
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 31
|u dkfz
700 1 _ |a Andrew, Angeline
|b 32
700 1 _ |a Cox, Angela
|0 0000-0002-5138-1099
|b 33
700 1 _ |a Ruano-Ravina, Alberto
|0 0000-0001-9927-7453
|b 34
700 1 _ |a Field, John K
|0 0000-0003-3951-6365
|b 35
700 1 _ |a Marchand, Loic Le
|b 36
700 1 _ |a Wang, Ying
|b 37
700 1 _ |a Chen, Chu
|b 38
700 1 _ |a Tardon, Adonina
|0 0000-0001-5150-1209
|b 39
700 1 _ |a Shete, Sanjay
|b 40
700 1 _ |a Schabath, Matthew B
|0 0000-0003-3241-3216
|b 41
700 1 _ |a Shen, Hongbing
|b 42
700 1 _ |a Landi, Maria Teresa
|b 43
700 1 _ |a Ryan, Brid M
|b 44
700 1 _ |a Schwartz, Ann G
|0 0000-0002-9525-1157
|b 45
700 1 _ |a Qi, Lihong
|b 46
700 1 _ |a Sakoda, Lori C
|0 0000-0002-0900-5735
|b 47
700 1 _ |a Brennan, Paul
|0 0000-0002-0518-8714
|b 48
700 1 _ |a Yang, Ping
|0 0000-0002-8588-847X
|b 49
700 1 _ |a Zhang, Jie
|b 50
700 1 _ |a Christiani, David C
|0 0000-0002-0301-0242
|b 51
700 1 _ |a Reis, Rui Manuel
|0 0000-0002-9639-7940
|b 52
700 1 _ |a Shiraishi, Kouya
|b 53
700 1 _ |a Hung, Rayjean J
|0 0000-0002-4486-7496
|b 54
700 1 _ |a Xu, Wei
|b 55
700 1 _ |a Liu, Geoffrey
|0 0000-0002-2603-7296
|b 56
773 _ _ |a 10.1158/1055-9965.EPI-21-0747
|g Vol. 31, no. 3, p. cebp.0747.2021 -
|0 PERI:(DE-600)2036781-8
|n 3
|p cebp.0747.2021 -
|t Cancer epidemiology, biomarkers & prevention
|v 31
|y 2022
|x 1055-9965
909 C O |o oai:inrepo02.dkfz.de:179129
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2021
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-10
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21