001     179147
005     20251119102157.0
024 7 _ |a 10.1136/jitc-2021-003917
|2 doi
024 7 _ |a pmid:35292516
|2 pmid
024 7 _ |a altmetric:124684329
|2 altmetric
037 _ _ |a DKFZ-2022-00503
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Prasad, Manu
|b 0
245 _ _ |a MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer.
260 _ _ |a London
|c 2022
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763544104_2172553
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #DKFZ-MOST-Ca204#
520 _ _ |a Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance.Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment.Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME.Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor-host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Head and neck cancer
|2 Other
650 _ 7 |a MEK1/2
|2 Other
650 _ 7 |a anti-PD-1
|2 Other
650 _ 7 |a immunotherapy
|2 Other
650 _ 7 |a targeted therapy
|2 Other
650 _ 7 |a tumor-immunity
|2 Other
650 _ 7 |a tumor-microenvironment
|2 Other
700 1 _ |a Zorea, Jonathan
|b 1
700 1 _ |a Jagadeeshan, Sankar
|b 2
700 1 _ |a Shnerb, Avital B
|b 3
700 1 _ |a Mathukkada, Sooraj
|b 4
700 1 _ |a Bouaoud, Jebrane
|b 5
700 1 _ |a Michon, Lucas
|b 6
700 1 _ |a Novoplansky, Ofra
|b 7
700 1 _ |a Badarni, Mai
|b 8
700 1 _ |a Cohen, Limor
|b 9
700 1 _ |a Yegodayev, Ksenia M
|b 10
700 1 _ |a Tzadok, Sapir
|b 11
700 1 _ |a Rotblat, Barak
|b 12
700 1 _ |a Brezina, Libor
|b 13
700 1 _ |a Mock, Andreas
|0 P:(DE-He78)8f7c3bc1451193551c2458d93222536a
|b 14
|u dkfz
700 1 _ |a Karabajakian, Andy
|b 15
700 1 _ |a Fayette, Jérôme
|b 16
700 1 _ |a Cohen, Idan
|b 17
700 1 _ |a Cooks, Tomer
|b 18
700 1 _ |a Allon, Irit
|b 19
700 1 _ |a Dimitstein, Orr
|b 20
700 1 _ |a Joshua, Benzion
|b 21
700 1 _ |a Kong, Dexin
|b 22
700 1 _ |a Voronov, Elena
|b 23
700 1 _ |a Scaltriti, Maurizio
|b 24
700 1 _ |a Carmi, Yaron
|b 25
700 1 _ |a Conde-Lopez, Cristina
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Hess, Jochen
|0 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f
|b 27
|u dkfz
700 1 _ |a Kurth, Ina
|0 P:(DE-He78)f3723bca6eb95009d4c95a7590617b68
|b 28
|u dkfz
700 1 _ |a Morris, Luc G T
|b 29
700 1 _ |a Saintigny, Pierre
|0 0000-0002-8090-9323
|b 30
700 1 _ |a Elkabets, Moshe
|0 0000-0003-3634-9098
|b 31
773 _ _ |a 10.1136/jitc-2021-003917
|g Vol. 10, no. 3, p. e003917 -
|0 PERI:(DE-600)2719863-7
|n 3
|p e003917
|t Journal for ImmunoTherapy of Cancer
|v 10
|y 2022
|x 2051-1426
909 C O |p VDB
|o oai:inrepo02.dkfz.de:179147
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)8f7c3bc1451193551c2458d93222536a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)f3723bca6eb95009d4c95a7590617b68
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version)
|0 LIC:(DE-HGF)CCBYNCNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IMMUNOTHER CANCER : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-14T19:11:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-14T19:11:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-14T19:11:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-08
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J IMMUNOTHER CANCER : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)E221-20160331
|k E221
|l Molekulare Grundlagen von HNO-Tumoren
|x 1
920 1 _ |0 I:(DE-He78)E220-20160331
|k E220
|l E220 Radioonkologie Radiobiologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)E221-20160331
980 _ _ |a I:(DE-He78)E220-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21