001     179252
005     20240229145537.0
024 7 _ |a 10.1038/s41467-022-29152-4
|2 doi
024 7 _ |a pmid:35318328
|2 pmid
024 7 _ |a altmetric:125105766
|2 altmetric
037 _ _ |a DKFZ-2022-00534
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Graf, Monika
|b 0
245 _ _ |a Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors.
260 _ _ |a [London]
|c 2022
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648641604_12795
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Interlandi, Marta
|0 0000-0002-6863-2552
|b 1
700 1 _ |a Moreno, Natalia
|b 2
700 1 _ |a Holdhof, Dörthe
|0 0000-0003-4664-3848
|b 3
700 1 _ |a Göbel, Carolin
|0 0000-0002-7345-2089
|b 4
700 1 _ |a Melcher, Viktoria
|b 5
700 1 _ |a Mertins, Julius
|b 6
700 1 _ |a Albert, Thomas K
|b 7
700 1 _ |a Kastrati, Dennis
|b 8
700 1 _ |a Alfert, Amelie
|b 9
700 1 _ |a Holsten, Till
|b 10
700 1 _ |a de Faria, Flavia
|b 11
700 1 _ |a Meisterernst, Michael
|b 12
700 1 _ |a Rossig, Claudia
|b 13
700 1 _ |a Warmuth-Metz, Monika
|b 14
700 1 _ |a Nowak, Johannes
|0 0000-0002-3595-8951
|b 15
700 1 _ |a Meyer Zu Hörste, Gerd
|0 0000-0002-4341-4719
|b 16
700 1 _ |a Mayère, Chloe
|b 17
700 1 _ |a Nef, Serge
|0 0000-0001-5462-0676
|b 18
700 1 _ |a Johann, Pascal
|0 P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8
|b 19
|u dkfz
700 1 _ |a Frühwald, Michael C
|b 20
700 1 _ |a Dugas, Martin
|0 0000-0001-9740-0788
|b 21
700 1 _ |a Schüller, Ulrich
|0 0000-0002-8731-1121
|b 22
700 1 _ |a Kerl, Kornelius
|0 0000-0002-5676-8102
|b 23
773 _ _ |a 10.1038/s41467-022-29152-4
|g Vol. 13, no. 1, p. 1544
|0 PERI:(DE-600)2553671-0
|n 1
|p 1544
|t Nature Communications
|v 13
|y 2022
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:179252
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)3fdc3623477264cb5d0e14f256dbfbb8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:44:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-10-13T14:44:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21