001     179392
005     20240229145542.0
024 7 _ |a 10.1016/j.radonc.2022.03.017
|2 doi
024 7 _ |a pmid:35367526
|2 pmid
024 7 _ |a 0167-8140
|2 ISSN
024 7 _ |a 1879-0887
|2 ISSN
024 7 _ |a altmetric:125681063
|2 altmetric
037 _ _ |a DKFZ-2022-00643
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hintz, Lisa
|0 P:(DE-He78)6e765266561c869659589500555d49c4
|b 0
|e First author
|u dkfz
245 _ _ |a Relative biological effectiveness of single and split helium ion doses in the rat spinal cord increases strongly with linear energy transfer.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654161998_19465
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2022 May;170:224-230
520 _ _ |a Determination of the relative biological effectiveness (RBE) of helium ions as a function of linear energy transfer (LET) for single and split doses using the rat cervical spinal cord as model system for late-responding normal tissue.The rat cervical spinal cord was irradiated at four different positions within a 6 cm spread-out Bragg-peak (SOBP) (LET 2.9, 9.4, 14.4 and 20.7 keV/µm) using increasing levels of single or split doses of helium ions. Dose-response curves were determined and based on TD50-values (dose at 50% effect probability using paresis II as endpoint), RBE-values were derived for the endpoint of radiation-induced myelopathy.With increasing LET, RBE-values increased from 1.13 ± 0.04 to 1.42 ± 0.05 (single dose) and 1.12 ± 0.03 to 1.50 ± 0.04 (split doses) as TD50-values decreased from 21.7 ± 0.3 Gy to 17.3 ± 0.3 Gy (single dose) and 30.6 ± 0.3 Gy to 22.9 ± 0.3 Gy (split doses), respectively. RBE-models (LEM I and IV, mMKM) deviated differently for single and split doses but described the RBE variation in the high-LET region sufficiently accurate.This study established the LET-dependence of the RBE for late effects in the central nervous system after single and split doses of helium ions. The results extend the existing database for protons and carbon ions and allow systematic testing of RBE-models. While the RBE-values of helium were generally lower than for carbon ions, the increase at the distal edge of the Bragg-peak was larger than for protons, making detailed RBE-modeling necessary.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Helium ion radiotherapy
|2 Other
650 _ 7 |a Late normal tissue effects
|2 Other
650 _ 7 |a Linear energy transfer (LET)
|2 Other
650 _ 7 |a Local effect model (LEM)
|2 Other
650 _ 7 |a Modified Microdosimetric kinetic model (mMKM)
|2 Other
650 _ 7 |a Myelopathy
|2 Other
650 _ 7 |a Protons
|2 Other
650 _ 7 |a Rat spinal cord
|2 Other
650 _ 7 |a Relative biological effectiveness (RBE)
|2 Other
700 1 _ |a Glowa, Christin
|0 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
|b 1
|u dkfz
700 1 _ |a Saager, Maria
|0 P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308
|b 2
700 1 _ |a Euler-Lange, Rosemarie
|0 P:(DE-He78)f628d9e6d7787963743903d31510bbad
|b 3
|u dkfz
700 1 _ |a Peschke, Peter
|0 P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a
|b 4
700 1 _ |a Brons, Stephan
|b 5
700 1 _ |a Grün, Rebecca
|b 6
700 1 _ |a Scholz, Michael
|b 7
700 1 _ |a Mein, Stewart
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Mairani, Andrea
|b 9
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 10
|u dkfz
700 1 _ |a Karger, Christian
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.radonc.2022.03.017
|g p. S0167814022001554
|0 PERI:(DE-600)1500707-8
|p 224-230
|t Radiotherapy and oncology
|v 170
|y 2022
|x 0167-8140
909 C O |p VDB
|o oai:inrepo02.dkfz.de:179392
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)6e765266561c869659589500555d49c4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f628d9e6d7787963743903d31510bbad
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOTHER ONCOL : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RADIOTHER ONCOL : 2021
|d 2022-11-29
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E210-20160331
|k E210
|l E210 Translationale Radioonkologie
|x 1
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 2
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E210-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21