001     179552
005     20240229145546.0
024 7 _ |a 10.3390/nu14071437
|2 doi
024 7 _ |a pmid:35406052
|2 pmid
024 7 _ |a pmc:PMC9002806
|2 pmc
024 7 _ |a altmetric:126480269
|2 altmetric
037 _ _ |a DKFZ-2022-00730
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Spurny, Manuela
|b 0
245 _ _ |a Changes in Kidney Fat upon Dietary-Induced Weight Loss.
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650876572_22270
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As the metabolic role of kidney fat remains unclear, we investigated the effects of dietary weight loss on kidney fat content (KFC) and its connection to kidney function and metabolism. Overweight or obese participants (n = 137) of a dietary intervention trial were classified into quartiles of weight loss in a post hoc manner. Kidney sinus (KSF) and cortex fat (KCF) were measured by magnetic resonance imaging at baseline, week 12 and week 50. Weight loss effects on KFC were evaluated by linear mixed models. Repeated measures correlations between KFC, other body fat measures and metabolic biomarkers were obtained. KSF, but not KCF, decreased significantly across weight loss quartiles at week 12 (quartile 4: -21.3%; p = 0.02) and 50 (-22.0%, p = 0.001), which remained significant after adjusting for VAT. There were smaller improvements regarding creatinine (-2.5%, p = 0.02) at week 12, but not week 50. KSF, but not KCF, correlated with visceral (rrm = 0.38) and subcutaneous fat volumes (rrm = 0.31) and liver fat content (rrm = 0.32), as well as diastolic blood pressure and biomarkers of lipid, glucose and liver metabolism. Dietary weight loss is associated with decreases in KSF, but not KCF, which suggests that KSF may be the metabolically relevant ectopic fat depot of the kidney. KSF may be targeted for obesity-related disease prevention.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a body composition
|2 Other
650 _ 7 |a diet induced weight loss
|2 Other
650 _ 7 |a kidney fat content
|2 Other
650 _ 7 |a magnetic resonance imaging
|2 Other
650 _ 7 |a obesity
|2 Other
650 _ 7 |a overweight
|2 Other
650 _ 7 |a renal sinus fat
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Adipose Tissue: metabolism
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Kidney: metabolism
|2 MeSH
650 _ 2 |a Obesity: metabolism
|2 MeSH
650 _ 2 |a Overweight: complications
|2 MeSH
650 _ 2 |a Weight Loss: physiology
|2 MeSH
700 1 _ |a Jiang, Yixin
|0 0000-0001-8504-0500
|b 1
700 1 _ |a Sowah, Solomon
|0 P:(DE-He78)b4004ee4b650b575447f59a4a0471312
|b 2
700 1 _ |a Nonnenmacher, Tobias
|b 3
700 1 _ |a Schübel, Ruth
|0 P:(DE-He78)ceb74219d144ab5760a228e71440c5ca
|b 4
700 1 _ |a Kirsten, Romy
|b 5
700 1 _ |a Johnson, Theron
|0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
|b 6
|u dkfz
700 1 _ |a von Stackelberg, Oyunbileg
|b 7
700 1 _ |a Ulrich, Cornelia M
|b 8
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 9
|u dkfz
700 1 _ |a Kauczor, Hans-Ulrich
|b 10
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 11
700 1 _ |a Nattenmüller, Johanna
|b 12
773 _ _ |a 10.3390/nu14071437
|g Vol. 14, no. 7, p. 1437 -
|0 PERI:(DE-600)2518386-2
|n 7
|p 1437
|t Nutrients
|v 14
|y 2022
|x 2072-6643
909 C O |o oai:inrepo02.dkfz.de:179552
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b4004ee4b650b575447f59a4a0471312
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)ceb74219d144ab5760a228e71440c5ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-27T10:32:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-27T10:32:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-27T10:32:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21