001     179588
005     20240229145548.0
024 7 _ |a 10.1186/s12916-022-02319-y
|2 doi
024 7 _ |a pmid:35430795
|2 pmid
024 7 _ |a pmc:PMC9014562
|2 pmc
024 7 _ |a altmetric:126809842
|2 altmetric
037 _ _ |a DKFZ-2022-00766
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Cairat, Manon
|b 0
245 _ _ |a Circulating inflammatory biomarkers, adipokines and breast cancer risk-a case-control study nested within the EPIC cohort.
260 _ _ |a Heidelberg [u.a.]
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1650875390_22269
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inflammation has been hypothesized to play a role in the development and progression of breast cancer and might differently impact breast cancer risk among pre and postmenopausal women. We performed a nested case-control study to examine whether pre-diagnostic circulating concentrations of adiponectin, leptin, c-reactive protein (CRP), tumour necrosis factor-α, interferon-γ and 6 interleukins were associated with breast cancer risk, overall and by menopausal status.Pre-diagnostic levels of inflammatory biomarkers were measured in plasma from 1558 case-control pairs from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. We used conditional logistic regression to estimate the odds ratios (ORs) of breast cancer at blood collection, per one standard deviation increase in biomarker concentration.Cases were diagnosed at a mean age of 61.4 years on average 8.6 years after blood collection. No statistically significant association was observed between inflammatory markers and breast cancer risk overall. In premenopausal women, borderline significant inverse associations were observed for leptin, leptin-to-adiponectin ratio and CRP [OR= 0.89 (0.77-1.03), OR= 0.88 (0.76-1.01) and OR= 0.87 (0.75-1.01), respectively] while positive associations were observed among postmenopausal women [OR= 1.16 (1.05-1.29), OR= 1.11 (1.01-1.23), OR= 1.10 (0.99-1.22), respectively]. Adjustment for BMI strengthened the estimates in premenopausal women [leptin: OR = 0.83 (0.68-1.00), leptin-to-adiponectin ratio: OR = 0.80 (0.66-0.97), CRP: OR = 0.85 (0.72-1.00)] but attenuated the estimates in postmenopausal women [leptin: OR = 1.09 (0.96-1.24), leptin-to-adiponectin ratio: OR = 1.02 (0.89-1.16), CRP: OR = 1.04 (0.92-1.16)].Associations between CRP, leptin and leptin-to-adiponectin ratio with breast cancer risk may represent the dual effect of obesity by menopausal status although this deserves further investigation.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Anthropometry
|2 Other
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Inflammation
|2 Other
650 _ 7 |a Menopausal status
|2 Other
650 _ 7 |a Adipokines
|2 NLM Chemicals
650 _ 7 |a Adiponectin
|2 NLM Chemicals
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Leptin
|2 NLM Chemicals
650 _ 7 |a C-Reactive Protein
|0 9007-41-4
|2 NLM Chemicals
650 _ 2 |a Adipokines
|2 MeSH
650 _ 2 |a Adiponectin
|2 MeSH
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Body Mass Index
|2 MeSH
650 _ 2 |a Breast Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Breast Neoplasms: epidemiology
|2 MeSH
650 _ 2 |a C-Reactive Protein: metabolism
|2 MeSH
650 _ 2 |a Case-Control Studies
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Leptin
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Risk Factors
|2 MeSH
700 1 _ |a Rinaldi, Sabina
|b 1
700 1 _ |a Navionis, Anne-Sophie
|b 2
700 1 _ |a Romieu, Isabelle
|b 3
700 1 _ |a Biessy, Carine
|b 4
700 1 _ |a Viallon, Vivian
|b 5
700 1 _ |a Olsen, Anja
|b 6
700 1 _ |a Tjønneland, Anne
|b 7
700 1 _ |a Fournier, Agnès
|b 8
700 1 _ |a Severi, Gianluca
|b 9
700 1 _ |a Kvaskoff, Marina
|b 10
700 1 _ |a Fortner, Renée T
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 11
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 12
|u dkfz
700 1 _ |a Aleksandrova, Krasimira
|b 13
700 1 _ |a Schulze, Matthias B
|b 14
700 1 _ |a Masala, Giovanna
|b 15
700 1 _ |a Tumino, Rosario
|b 16
700 1 _ |a Sieri, Sabina
|b 17
700 1 _ |a Grasso, Chiara
|b 18
700 1 _ |a Mattiello, Amalia
|b 19
700 1 _ |a Gram, Inger T
|b 20
700 1 _ |a Olsen, Karina Standahl
|b 21
700 1 _ |a Agudo, Antonio
|b 22
700 1 _ |a Etxezarreta, Pilar Amiano
|b 23
700 1 _ |a Sánchez, Maria-Jose
|b 24
700 1 _ |a Santiuste, Carmen
|b 25
700 1 _ |a Barricarte, Aurelio
|b 26
700 1 _ |a Monninkhof, Evelyn
|b 27
700 1 _ |a Hiensch, Anouk E
|b 28
700 1 _ |a Muller, David
|b 29
700 1 _ |a Merritt, Melissa A
|b 30
700 1 _ |a Travis, Ruth C
|b 31
700 1 _ |a Weiderpass, Elisabete
|b 32
700 1 _ |a Gunter, Marc J
|b 33
700 1 _ |a Dossus, Laure
|0 0000-0003-2716-5748
|b 34
773 _ _ |a 10.1186/s12916-022-02319-y
|g Vol. 20, no. 1, p. 118
|0 PERI:(DE-600)2131669-7
|n 1
|p 118
|t BMC medicine
|v 20
|y 2022
|x 1741-7015
909 C O |o oai:inrepo02.dkfz.de:179588
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:19:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:19:46Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2021-02-14T16:19:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-25
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BMC MED : 2021
|d 2022-11-25
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21