001     179659
005     20240229145550.0
024 7 _ |a 10.1097/RLI.0000000000000878
|2 doi
024 7 _ |a pmid:35467572
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
024 7 _ |a altmetric:127285159
|2 altmetric
037 _ _ |a DKFZ-2022-00831
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhang, Kevin Sun
|0 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
|b 0
|e First author
|u dkfz
245 _ _ |a Pseudoprospective Paraclinical Interaction of Radiology Residents With a Deep Learning System for Prostate Cancer Detection: Experience, Performance, and Identification of the Need for Intermittent Recalibration.
260 _ _ |a [s.l.]
|c 2022
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1706273410_5411
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010# / 2022 Sep 1;57(9):601-612
520 _ _ |a The aim of this study was to estimate the prospective utility of a previously retrospectively validated convolutional neural network (CNN) for prostate cancer (PC) detection on prostate magnetic resonance imaging (MRI).The biparametric (T2-weighted and diffusion-weighted) portion of clinical multiparametric prostate MRI from consecutive men included between November 2019 and September 2020 was fully automatically and individually analyzed by a CNN briefly after image acquisition (pseudoprospective design). Radiology residents performed 2 research Prostate Imaging Reporting and Data System (PI-RADS) assessments of the multiparametric dataset independent from clinical reporting (paraclinical design) before and after review of the CNN results and completed a survey. Presence of clinically significant PC was determined by the presence of an International Society of Urological Pathology grade 2 or higher PC on combined targeted and extended systematic transperineal MRI/transrectal ultrasound fusion biopsy. Sensitivities and specificities on a patient and prostate sextant basis were compared using the McNemar test and compared with the receiver operating characteristic (ROC) curve of CNN. Survey results were summarized as absolute counts and percentages.A total of 201 men were included. The CNN achieved an ROC area under the curve of 0.77 on a patient basis. Using PI-RADS ≥3-emulating probability threshold (c3), CNN had a patient-based sensitivity of 81.8% and specificity of 54.8%, not statistically different from the current clinical routine PI-RADS ≥4 assessment at 90.9% and 54.8%, respectively (P = 0.30/P = 1.0). In general, residents achieved similar sensitivity and specificity before and after CNN review. On a prostate sextant basis, clinical assessment possessed the highest ROC area under the curve of 0.82, higher than CNN (AUC = 0.76, P = 0.21) and significantly higher than resident performance before and after CNN review (AUC = 0.76 / 0.76, P ≤ 0.03). The resident survey indicated CNN to be helpful and clinically useful.Pseudoprospective paraclinical integration of fully automated CNN-based detection of suspicious lesions on prostate multiparametric MRI was demonstrated and showed good acceptance among residents, whereas no significant improvement in resident performance was found. General CNN performance was preserved despite an observed shift in CNN calibration, identifying the requirement for continuous quality control and recalibration.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Schelb, Patrick
|0 P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662
|b 1
|u dkfz
700 1 _ |a Netzer, Nils
|0 P:(DE-He78)32c69a3bed6c75b378ef19ad39a74572
|b 2
|u dkfz
700 1 _ |a Tavakoli, Anoshirwan Andrej
|0 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3
|b 3
|u dkfz
700 1 _ |a Keymling, Myriam
|0 P:(DE-He78)90780180db1ef4845433057cef4eaeb0
|b 4
|u dkfz
700 1 _ |a Wehrse, Eckhard
|0 P:(DE-He78)b4371bfbf1c75613142130d9b68434aa
|b 5
|u dkfz
700 1 _ |a Hog, Robert
|0 P:(DE-He78)23a9714c3fa8990e4c253d71fe417590
|b 6
|u dkfz
700 1 _ |a Rotkopf, Lukas Thomas
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 7
|u dkfz
700 1 _ |a Wennmann, Markus
|0 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
|b 8
|u dkfz
700 1 _ |a Glemser, Philip Alexander
|0 P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7
|b 9
|u dkfz
700 1 _ |a Thierjung, Heidi
|0 P:(DE-He78)1021bc323e8a90893b1cbf45437894b1
|b 10
|u dkfz
700 1 _ |a von Knebel Doeberitz, Nikolaus
|0 P:(DE-He78)857bbcdb8f5f582e00795df8b957767d
|b 11
|u dkfz
700 1 _ |a Kleesiek, Jens
|0 P:(DE-He78)ec13544e7fd4c62ac008490a4547e990
|b 12
|u dkfz
700 1 _ |a Görtz, Magdalena
|0 P:(DE-He78)0f26d76d27427945f14f0e874d824aa6
|b 13
|u dkfz
700 1 _ |a Schütz, Viktoria
|b 14
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 15
|u dkfz
700 1 _ |a Stenzinger, Albrecht
|b 16
700 1 _ |a Hohenfellner, Markus
|b 17
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 18
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 19
|u dkfz
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 20
|e Last author
|u dkfz
773 _ _ |a 10.1097/RLI.0000000000000878
|g Vol. Publish Ahead of Print
|0 PERI:(DE-600)2041543-6
|n 9
|p 601-612
|t Investigative radiology
|v 57
|y 2022
|x 0020-9996
909 C O |p VDB
|o oai:inrepo02.dkfz.de:179659
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)4b5e5faa688c6b833c70b6777f91f662
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)32c69a3bed6c75b378ef19ad39a74572
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)c6d2d9aa8c2d4ecd0dd6f96d2f40b7c3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90780180db1ef4845433057cef4eaeb0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)b4371bfbf1c75613142130d9b68434aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)23a9714c3fa8990e4c253d71fe417590
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)ec15551e1bf57c41065d3502b66b1fe7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)1021bc323e8a90893b1cbf45437894b1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)857bbcdb8f5f582e00795df8b957767d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)ec13544e7fd4c62ac008490a4547e990
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)0f26d76d27427945f14f0e874d824aa6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b INVEST RADIOL : 2021
|d 2022-11-29
920 2 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E250-20160331
|k E250
|l NWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms
|x 1
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 4
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E250-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21