001     179696
005     20240229145551.0
024 7 _ |a 10.1038/s41591-022-01768-5
|2 doi
024 7 _ |a pmid:35469069
|2 pmid
024 7 _ |a 1078-8956
|2 ISSN
024 7 _ |a 1546-170X
|2 ISSN
024 7 _ |a altmetric:127264908
|2 altmetric
037 _ _ |a DKFZ-2022-00845
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Saldanha, Oliver Lester
|b 0
245 _ _ |a Swarm learning for decentralized artificial intelligence in cancer histopathology.
260 _ _ |a New York, NY
|c 2022
|b Nature America Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655905740_23458
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Jun;28(6):1232-1239
520 _ _ |a Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Quirke, Philip
|0 0000-0002-3597-5444
|b 1
700 1 _ |a West, Nicholas P
|0 0000-0002-0346-6709
|b 2
700 1 _ |a James, Jacqueline A
|0 0000-0002-6945-6060
|b 3
700 1 _ |a Loughrey, Maurice B
|b 4
700 1 _ |a Grabsch, Heike I
|0 0000-0001-9520-6228
|b 5
700 1 _ |a Salto-Tellez, Manuel
|b 6
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 7
|u dkfz
700 1 _ |a Cifci, Didem
|0 0000-0002-2647-9959
|b 8
700 1 _ |a Ghaffari Laleh, Narmin
|b 9
700 1 _ |a Seibel, Tobias
|b 10
700 1 _ |a Gray, Richard
|0 0000-0003-4440-574X
|b 11
700 1 _ |a Hutchins, Gordon G A
|b 12
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 13
|u dkfz
700 1 _ |a van Treeck, Marko
|b 14
700 1 _ |a Yuan, Tanwei
|0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349
|b 15
|u dkfz
700 1 _ |a Brinker, Titus J
|0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
|b 16
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 17
|u dkfz
700 1 _ |a Khader, Firas
|b 18
700 1 _ |a Schuppert, Andreas
|b 19
700 1 _ |a Luedde, Tom
|0 0000-0002-6288-8821
|b 20
700 1 _ |a Trautwein, Christian
|0 0000-0003-2762-8247
|b 21
700 1 _ |a Muti, Hannah Sophie
|b 22
700 1 _ |a Foersch, Sebastian
|b 23
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 24
|u dkfz
700 1 _ |a Truhn, Daniel
|b 25
700 1 _ |a Kather, Jakob Nikolas
|0 0000-0002-3730-5348
|b 26
773 _ _ |a 10.1038/s41591-022-01768-5
|0 PERI:(DE-600)1484517-9
|n 6
|p 1232-1239
|t Nature medicine
|v 28
|y 2022
|x 1078-8956
909 C O |p VDB
|o oai:inrepo02.dkfz.de:179696
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MED : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF >= 80
|0 StatID:(DE-HGF)9980
|2 StatID
|b NAT MED : 2021
|d 2022-11-17
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)C140-20160331
|k C140
|l NWG Digitale Biomarker in der Onkologie
|x 3
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C140-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21