Home > Publications database > Swarm learning for decentralized artificial intelligence in cancer histopathology. > print |
001 | 179696 | ||
005 | 20240229145551.0 | ||
024 | 7 | _ | |a 10.1038/s41591-022-01768-5 |2 doi |
024 | 7 | _ | |a pmid:35469069 |2 pmid |
024 | 7 | _ | |a 1078-8956 |2 ISSN |
024 | 7 | _ | |a 1546-170X |2 ISSN |
024 | 7 | _ | |a altmetric:127264908 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-00845 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Saldanha, Oliver Lester |b 0 |
245 | _ | _ | |a Swarm learning for decentralized artificial intelligence in cancer histopathology. |
260 | _ | _ | |a New York, NY |c 2022 |b Nature America Inc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1655905740_23458 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2022 Jun;28(6):1232-1239 |
520 | _ | _ | |a Artificial intelligence (AI) can predict the presence of molecular alterations directly from routine histopathology slides. However, training robust AI systems requires large datasets for which data collection faces practical, ethical and legal obstacles. These obstacles could be overcome with swarm learning (SL), in which partners jointly train AI models while avoiding data transfer and monopolistic data governance. Here, we demonstrate the successful use of SL in large, multicentric datasets of gigapixel histopathology images from over 5,000 patients. We show that AI models trained using SL can predict BRAF mutational status and microsatellite instability directly from hematoxylin and eosin (H&E)-stained pathology slides of colorectal cancer. We trained AI models on three patient cohorts from Northern Ireland, Germany and the United States, and validated the prediction performance in two independent datasets from the United Kingdom. Our data show that SL-trained AI models outperform most locally trained models, and perform on par with models that are trained on the merged datasets. In addition, we show that SL-based AI models are data efficient. In the future, SL can be used to train distributed AI models for any histopathology image analysis task, eliminating the need for data transfer. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Quirke, Philip |0 0000-0002-3597-5444 |b 1 |
700 | 1 | _ | |a West, Nicholas P |0 0000-0002-0346-6709 |b 2 |
700 | 1 | _ | |a James, Jacqueline A |0 0000-0002-6945-6060 |b 3 |
700 | 1 | _ | |a Loughrey, Maurice B |b 4 |
700 | 1 | _ | |a Grabsch, Heike I |0 0000-0001-9520-6228 |b 5 |
700 | 1 | _ | |a Salto-Tellez, Manuel |b 6 |
700 | 1 | _ | |a Alwers, Elizabeth |0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63 |b 7 |u dkfz |
700 | 1 | _ | |a Cifci, Didem |0 0000-0002-2647-9959 |b 8 |
700 | 1 | _ | |a Ghaffari Laleh, Narmin |b 9 |
700 | 1 | _ | |a Seibel, Tobias |b 10 |
700 | 1 | _ | |a Gray, Richard |0 0000-0003-4440-574X |b 11 |
700 | 1 | _ | |a Hutchins, Gordon G A |b 12 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 13 |u dkfz |
700 | 1 | _ | |a van Treeck, Marko |b 14 |
700 | 1 | _ | |a Yuan, Tanwei |0 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |b 15 |u dkfz |
700 | 1 | _ | |a Brinker, Titus J |0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb |b 16 |u dkfz |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 17 |u dkfz |
700 | 1 | _ | |a Khader, Firas |b 18 |
700 | 1 | _ | |a Schuppert, Andreas |b 19 |
700 | 1 | _ | |a Luedde, Tom |0 0000-0002-6288-8821 |b 20 |
700 | 1 | _ | |a Trautwein, Christian |0 0000-0003-2762-8247 |b 21 |
700 | 1 | _ | |a Muti, Hannah Sophie |b 22 |
700 | 1 | _ | |a Foersch, Sebastian |b 23 |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 24 |u dkfz |
700 | 1 | _ | |a Truhn, Daniel |b 25 |
700 | 1 | _ | |a Kather, Jakob Nikolas |0 0000-0002-3730-5348 |b 26 |
773 | _ | _ | |a 10.1038/s41591-022-01768-5 |0 PERI:(DE-600)1484517-9 |n 6 |p 1232-1239 |t Nature medicine |v 28 |y 2022 |x 1078-8956 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:179696 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)b9e439a1aa1244925f92d547c0919349 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 16 |6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 17 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 24 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-03 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-03 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-03 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-17 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-17 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT MED : 2021 |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-17 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-17 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-17 |
915 | _ | _ | |a IF >= 80 |0 StatID:(DE-HGF)9980 |2 StatID |b NAT MED : 2021 |d 2022-11-17 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 1 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C140-20160331 |k C140 |l NWG Digitale Biomarker in der Onkologie |x 3 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 4 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)C140-20160331 |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|