000179737 001__ 179737 000179737 005__ 20240229145552.0 000179737 0247_ $$2doi$$a10.2196/36709 000179737 0247_ $$2pmid$$apmid:35486893 000179737 0247_ $$2altmetric$$aaltmetric:127531148 000179737 037__ $$aDKFZ-2022-00864 000179737 041__ $$aEnglish 000179737 082__ $$a004 000179737 1001_ $$aGruendner, Julian$$b0 000179737 245__ $$aArchitecture for a feasibility query portal for distributed COVID-19 Fast Healthcare Interoperability Resources (FHIR) patient data repositories: Design and Implementation Study. 000179737 260__ $$aToronto$$c2022 000179737 3367_ $$2DRIVER$$aarticle 000179737 3367_ $$2DataCite$$aOutput Types/Journal article 000179737 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654169692_19465 000179737 3367_ $$2BibTeX$$aARTICLE 000179737 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000179737 3367_ $$00$$2EndNote$$aJournal Article 000179737 500__ $$a2022 May 25;10(5):e36709 000179737 520__ $$aAn essential step in any medical research project after having identified the research question is to find out if there are enough patients available for a study and where to find them. Pursuing digital feasibility queries on available patient data registries has proven to be an excellent way of reusing existing real world data sources. To support multicentric research, these feasibility queries should be designed and implemented to run across multiple sites and securely access local data. Working across hospitals usually also means working with different data formats and vocabularies. Recently, the Fast Healthcare Interoperability Resources (FHIR) standard has been developed by HL7 to address this concern and describe patient data in a standardized format. The Medical Informatics Initiative (MII) in Germany has committed to this standard and created Data Integration Centers, which convert existing data into the FHIR format at each hospital. This partially solves the interoperability problem, however a distributed feasibility query platform for the FHIR standard is still missing.This study describes the design and implementation of the components involved in creating a cross-hospital feasibility query platform for researchers based on FHIR resources. This effort is part of a larger COVID-19 data exchange platform (CODEX) and is designed to be scalable for a broad range of patient data.We analyzed and designed the abstract components necessary for a distributed feasibility query. This included a user interface for creating the query, a backend with an ontology and terminology service, a middleware for query distribution and a FHIR feasibility query execution service.We implemented the components identified in the methods. The resulting solution was distributed to 33 German university hospitals. The functionality of the comprehensive network infrastructure was demonstrated using a test dataset based on the German Corona Consensus Dataset (GECCO). A performance test using specifically created synthetic data revealed the applicability of our solution to datasets containing millions of FHIR resources. The solution can be easily deployed across the hospitals and supports feasibility queries, combining multiple inclusion and exclusion criteria using standard Health Level Seven (HL7) query languages such as the Clinical Quality Language (CQL) and FHIR Search. Developing a platform based on multiple microservices allowed us to create an extendable platform and support multiple HL7 query languages and middleware components to allow integration with future directions of the Medical Informatics Initiative.We designed and implemented a feasibility platform for distributed feasibility queries, which works directly on FHIR formatted data and distributed it across 33 university hospitals in Germany. We showed that developing a feasibility platform directly on the FHIR standard is feasible. 000179737 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000179737 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000179737 7001_ $$aDeppenwiese, Noemi$$b1 000179737 7001_ $$aFolz, Michael$$b2 000179737 7001_ $$0P:(DE-He78)2d3f4184094dad9cd303bf5e059d31ba$$aKöhler, Thomas$$b3$$udkfz 000179737 7001_ $$aKroll, Björn$$b4 000179737 7001_ $$aProkosch, Hans-Ulrich$$b5 000179737 7001_ $$aRosenau, Lorenz$$b6 000179737 7001_ $$aRühle, Mathias$$b7 000179737 7001_ $$aScheidl, Marc-Anton$$b8 000179737 7001_ $$aSchüttler, Christina$$b9 000179737 7001_ $$aSedlmayr, Brita$$b10 000179737 7001_ $$aTwrdik, Alexander$$b11 000179737 7001_ $$0P:(DE-He78)bb77c6a26154ffc5bd3a6c521be5a1e8$$aKiel, Alexander$$b12$$udkfz 000179737 7001_ $$aMajeed, Raphael W$$b13 000179737 773__ $$0PERI:(DE-600)2798261-0$$a10.2196/36709$$n5$$pe36709$$tJMIR medical informatics$$v10$$x2291-9694$$y2022 000179737 909CO $$ooai:inrepo02.dkfz.de:179737$$pVDB 000179737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)2d3f4184094dad9cd303bf5e059d31ba$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000179737 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb77c6a26154ffc5bd3a6c521be5a1e8$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000179737 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000179737 9141_ $$y2022 000179737 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-29 000179737 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29 000179737 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29 000179737 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29 000179737 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29 000179737 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12 000179737 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12 000179737 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-03-02T17:06:49Z 000179737 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-03-02T17:06:49Z 000179737 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-03-02T17:06:49Z 000179737 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12 000179737 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12 000179737 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0 000179737 980__ $$ajournal 000179737 980__ $$aVDB 000179737 980__ $$aI:(DE-He78)E260-20160331 000179737 980__ $$aUNRESTRICTED