000179779 001__ 179779
000179779 005__ 20240229145553.0
000179779 0247_ $$2doi$$a10.1038/s41598-022-11203-x
000179779 0247_ $$2pmid$$apmid:35504940
000179779 0247_ $$2altmetric$$aaltmetric:127701779
000179779 037__ $$aDKFZ-2022-00886
000179779 041__ $$aEnglish
000179779 082__ $$a600
000179779 1001_ $$0P:(DE-He78)882f301adcd54a8844b2979973d672b9$$aSommerkamp, Pia$$b0$$eFirst author$$udkfz
000179779 245__ $$aCRISPR-Cas9 mediated generation of a conditional poly(A) binding protein nuclear 1 (Pabpn1) mouse model reveals an essential role for hematopoietic stem cells.
000179779 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2022
000179779 3367_ $$2DRIVER$$aarticle
000179779 3367_ $$2DataCite$$aOutput Types/Journal article
000179779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651750688_20530
000179779 3367_ $$2BibTeX$$aARTICLE
000179779 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179779 3367_ $$00$$2EndNote$$aJournal Article
000179779 500__ $$a#EA:A010#LA:A010#
000179779 520__ $$aPoly(A) binding protein nuclear 1 (PABPN1) is known for its role in poly(A) tail addition and regulation of poly(A) tail length. In addition, it has been shown to be involved in alternative polyadenylation (APA). APA is a process regulating differential selection of polyadenylation sites, thereby influencing protein isoform expression and 3'-UTR make-up. In this study, we generated an inducible Pabpn1flox/flox mouse model using crRNA-tracrRNA:Cas9 complexes targeting upstream and downstream genomic regions, respectively, in combination with a long single-stranded DNA (ssDNA) template. We performed extensive in vitro testing of various guide RNAs (gRNAs) to optimize recombination efficiency for in vivo application. Pabpn1flox/flox mice were generated and crossed to MxCre mice for validation experiments, allowing the induction of Cre expression in the bone marrow (BM) by poly(I:C) (pIC) injections. Validation experiments revealed successful deletion of Pabpn1 and absence of PABPN1 protein. Functionally, knockout (KO) of Pabpn1 led to a rapid and robust depletion of hematopoietic stem and progenitor cells (HSPCs) as well as myeloid cells, suggesting an essential role of Pabpn1 in the hematopoietic lineage. Overall, the mouse model allows an inducible in-depth in vivo analysis of the role of PABPN1 and APA regulation in different tissues and disease settings.
000179779 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000179779 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179779 7001_ $$0P:(DE-He78)193d882d3418c5d0ffbb210947510711$$aSommerkamp, Alexander C$$b1$$udkfz
000179779 7001_ $$0P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89$$aZeisberger, Petra$$b2$$udkfz
000179779 7001_ $$0P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138$$aEiben, Paula Leonie$$b3
000179779 7001_ $$0P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e$$aNarr, Andreas$$b4$$udkfz
000179779 7001_ $$0P:(DE-He78)125cb4218699cb19963e018e98142a02$$aKorkmaz, Aylin$$b5$$udkfz
000179779 7001_ $$0P:(DE-He78)a04326e65ca276a4b54d5fd127d9845f$$aPrzybylla, Adriana$$b6$$udkfz
000179779 7001_ $$0P:(DE-He78)39965117aef10b17055de724893accee$$aSohn, Markus$$b7$$udkfz
000179779 7001_ $$0P:(DE-He78)db41d10e17712fc21628c50a14f4d507$$avan der Hoeven, Franciscus$$b8$$udkfz
000179779 7001_ $$aSchönig, Kai$$b9
000179779 7001_ $$0P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2$$aTrumpp, Andreas$$b10$$eLast author$$udkfz
000179779 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-022-11203-x$$gVol. 12, no. 1, p. 7181$$n1$$p7181$$tScientific reports$$v12$$x2045-2322$$y2022
000179779 909CO $$ooai:inrepo02.dkfz.de:179779$$pVDB
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)882f301adcd54a8844b2979973d672b9$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)193d882d3418c5d0ffbb210947510711$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)125cb4218699cb19963e018e98142a02$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a04326e65ca276a4b54d5fd127d9845f$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)39965117aef10b17055de724893accee$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)db41d10e17712fc21628c50a14f4d507$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000179779 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000179779 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000179779 9141_ $$y2022
000179779 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000179779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-08T09:38:07Z
000179779 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-08T09:38:07Z
000179779 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-08T09:38:07Z
000179779 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-09
000179779 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09
000179779 9202_ $$0I:(DE-He78)A010-20160331$$kA010$$lA010 Stammzellen und Krebs$$x0
000179779 9200_ $$0I:(DE-He78)A010-20160331$$kA010$$lA010 Stammzellen und Krebs$$x0
000179779 9201_ $$0I:(DE-He78)A010-20160331$$kA010$$lA010 Stammzellen und Krebs$$x0
000179779 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPediatric Glioma$$x1
000179779 9201_ $$0I:(DE-He78)W450-20160331$$kW450$$lW450 Transgen-Service$$x2
000179779 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x3
000179779 980__ $$ajournal
000179779 980__ $$aVDB
000179779 980__ $$aI:(DE-He78)A010-20160331
000179779 980__ $$aI:(DE-He78)B360-20160331
000179779 980__ $$aI:(DE-He78)W450-20160331
000179779 980__ $$aI:(DE-He78)HD01-20160331
000179779 980__ $$aUNRESTRICTED