001     179779
005     20240229145553.0
024 7 _ |a 10.1038/s41598-022-11203-x
|2 doi
024 7 _ |a pmid:35504940
|2 pmid
024 7 _ |a altmetric:127701779
|2 altmetric
037 _ _ |a DKFZ-2022-00886
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Sommerkamp, Pia
|0 P:(DE-He78)882f301adcd54a8844b2979973d672b9
|b 0
|e First author
|u dkfz
245 _ _ |a CRISPR-Cas9 mediated generation of a conditional poly(A) binding protein nuclear 1 (Pabpn1) mouse model reveals an essential role for hematopoietic stem cells.
260 _ _ |a [London]
|c 2022
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651750688_20530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A010#LA:A010#
520 _ _ |a Poly(A) binding protein nuclear 1 (PABPN1) is known for its role in poly(A) tail addition and regulation of poly(A) tail length. In addition, it has been shown to be involved in alternative polyadenylation (APA). APA is a process regulating differential selection of polyadenylation sites, thereby influencing protein isoform expression and 3'-UTR make-up. In this study, we generated an inducible Pabpn1flox/flox mouse model using crRNA-tracrRNA:Cas9 complexes targeting upstream and downstream genomic regions, respectively, in combination with a long single-stranded DNA (ssDNA) template. We performed extensive in vitro testing of various guide RNAs (gRNAs) to optimize recombination efficiency for in vivo application. Pabpn1flox/flox mice were generated and crossed to MxCre mice for validation experiments, allowing the induction of Cre expression in the bone marrow (BM) by poly(I:C) (pIC) injections. Validation experiments revealed successful deletion of Pabpn1 and absence of PABPN1 protein. Functionally, knockout (KO) of Pabpn1 led to a rapid and robust depletion of hematopoietic stem and progenitor cells (HSPCs) as well as myeloid cells, suggesting an essential role of Pabpn1 in the hematopoietic lineage. Overall, the mouse model allows an inducible in-depth in vivo analysis of the role of PABPN1 and APA regulation in different tissues and disease settings.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Sommerkamp, Alexander C
|0 P:(DE-He78)193d882d3418c5d0ffbb210947510711
|b 1
|u dkfz
700 1 _ |a Zeisberger, Petra
|0 P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89
|b 2
|u dkfz
700 1 _ |a Eiben, Paula Leonie
|0 P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138
|b 3
700 1 _ |a Narr, Andreas
|0 P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e
|b 4
|u dkfz
700 1 _ |a Korkmaz, Aylin
|0 P:(DE-He78)125cb4218699cb19963e018e98142a02
|b 5
|u dkfz
700 1 _ |a Przybylla, Adriana
|0 P:(DE-He78)a04326e65ca276a4b54d5fd127d9845f
|b 6
|u dkfz
700 1 _ |a Sohn, Markus
|0 P:(DE-He78)39965117aef10b17055de724893accee
|b 7
|u dkfz
700 1 _ |a van der Hoeven, Franciscus
|0 P:(DE-He78)db41d10e17712fc21628c50a14f4d507
|b 8
|u dkfz
700 1 _ |a Schönig, Kai
|b 9
700 1 _ |a Trumpp, Andreas
|0 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41598-022-11203-x
|g Vol. 12, no. 1, p. 7181
|0 PERI:(DE-600)2615211-3
|n 1
|p 7181
|t Scientific reports
|v 12
|y 2022
|x 2045-2322
909 C O |o oai:inrepo02.dkfz.de:179779
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)882f301adcd54a8844b2979973d672b9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)193d882d3418c5d0ffbb210947510711
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)a2e11989a461bebbb1ab7659e10c8d89
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)72293931dabd0aa6cc6dcf84383e6138
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)93c82e53653d82bf5d1e8e40a9356c0e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)125cb4218699cb19963e018e98142a02
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a04326e65ca276a4b54d5fd127d9845f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)39965117aef10b17055de724893accee
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)db41d10e17712fc21628c50a14f4d507
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
920 2 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 0 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)A010-20160331
|k A010
|l A010 Stammzellen und Krebs
|x 0
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pediatric Glioma
|x 1
920 1 _ |0 I:(DE-He78)W450-20160331
|k W450
|l W450 Transgen-Service
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A010-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)W450-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21