001     179790
005     20240229145554.0
024 7 _ |a 10.7554/eLife.75374
|2 doi
024 7 _ |a pmid:35346416
|2 pmid
024 7 _ |a pmc:PMC9049976
|2 pmc
024 7 _ |a altmetric:125544014
|2 altmetric
037 _ _ |a DKFZ-2022-00897
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Morales Berstein, Fernanda
|0 0000-0002-8237-2021
|b 0
245 _ _ |a Assessing the causal role of epigenetic clocks in the development of multiple cancers: a Mendelian randomization study.
260 _ _ |a Cambridge
|c 2022
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651744451_32555
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epigenetic clocks have been associated with cancer risk in several observational studies. Nevertheless, it is unclear whether they play a causal role in cancer risk or if they act as a non-causal biomarker.We conducted a two-sample Mendelian randomization (MR) study to examine the genetically predicted effects of epigenetic age acceleration as measured by HannumAge (nine single-nucleotide polymorphisms (SNPs)), Horvath Intrinsic Age (24 SNPs), PhenoAge (11 SNPs), and GrimAge (4 SNPs) on multiple cancers (i.e. breast, prostate, colorectal, ovarian and lung cancer). We obtained genome-wide association data for biological ageing from a meta-analysis (N = 34,710), and for cancer from the UK Biobank (N cases = 2671-13,879; N controls = 173,493-372,016), FinnGen (N cases = 719-8401; N controls = 74,685-174,006) and several international cancer genetic consortia (N cases = 11,348-122,977; N controls = 15,861-105,974). Main analyses were performed using multiplicative random effects inverse variance weighted (IVW) MR. Individual study estimates were pooled using fixed effect meta-analysis. Sensitivity analyses included MR-Egger, weighted median, weighted mode and Causal Analysis using Summary Effect Estimates (CAUSE) methods, which are robust to some of the assumptions of the IVW approach.Meta-analysed IVW MR findings suggested that higher GrimAge acceleration increased the risk of colorectal cancer (OR = 1.12 per year increase in GrimAge acceleration, 95% CI 1.04-1.20, p = 0.002). The direction of the genetically predicted effects was consistent across main and sensitivity MR analyses. Among subtypes, the genetically predicted effect of GrimAge acceleration was greater for colon cancer (IVW OR = 1.15, 95% CI 1.09-1.21, p = 0.006), than rectal cancer (IVW OR = 1.05, 95% CI 0.97-1.13, p = 0.24). Results were less consistent for associations between other epigenetic clocks and cancers.GrimAge acceleration may increase the risk of colorectal cancer. Findings for other clocks and cancers were inconsistent. Further work is required to investigate the potential mechanisms underlying the results.FMB was supported by a Wellcome Trust PhD studentship in Molecular, Genetic and Lifecourse Epidemiology (224982/Z/22/Z which is part of grant 218495/Z/19/Z). KKT was supported by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme) and by the Hellenic Republic's Operational Programme 'Competitiveness, Entrepreneurship & Innovation' (OΠΣ 5047228). PH was supported by Cancer Research UK (C18281/A29019). RMM was supported by the NIHR Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). RMM is a National Institute for Health Research Senior Investigator (NIHR202411). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. GDS and CLR were supported by the Medical Research Council (MC_UU_00011/1 and MC_UU_00011/5, respectively) and by a Cancer Research UK (C18281/A29019) programme grant (the Integrative Cancer Epidemiology Programme). REM was supported by an Alzheimer's Society project grant (AS-PG-19b-010) and NIH grant (U01 AG-18-018, PI: Steve Horvath). RCR is a de Pass Vice Chancellor's Research Fellow at the University of Bristol.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Mendelian randomization
|2 Other
650 _ 7 |a cancer
|2 Other
650 _ 7 |a epidemiology
|2 Other
650 _ 7 |a epigenetic age acceleration
|2 Other
650 _ 7 |a epigenetic clocks
|2 Other
650 _ 7 |a genetics
|2 Other
650 _ 7 |a genomics
|2 Other
650 _ 7 |a human
|2 Other
650 _ 7 |a medicine
|2 Other
650 _ 2 |a Colorectal Neoplasms: epidemiology
|2 MeSH
650 _ 2 |a Colorectal Neoplasms: genetics
|2 MeSH
650 _ 2 |a Epigenesis, Genetic
|2 MeSH
650 _ 2 |a Genome-Wide Association Study: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Mendelian Randomization Analysis
|2 MeSH
650 _ 2 |a Polymorphism, Single Nucleotide
|2 MeSH
700 1 _ |a McCartney, Daniel L
|b 1
700 1 _ |a Lu, Ake T
|b 2
700 1 _ |a Tsilidis, Konstantinos K
|b 3
700 1 _ |a Bouras, Emmanouil
|b 4
700 1 _ |a Haycock, Philip
|0 0000-0001-5001-3350
|b 5
700 1 _ |a Burrows, Kimberley
|b 6
700 1 _ |a Phipps, Amanda I
|b 7
700 1 _ |a Buchanan, Daniel D
|b 8
700 1 _ |a Cheng, Iona
|b 9
700 1 _ |a consortium, PRACTICAL
|b 10
|e Collaboration Author
700 1 _ |a Martin, Richard M
|0 0000-0002-7992-7719
|b 11
700 1 _ |a Davey Smith, George
|0 0000-0002-1407-8314
|b 12
700 1 _ |a Relton, Caroline L
|0 0000-0003-2052-4840
|b 13
700 1 _ |a Horvath, Steve
|b 14
700 1 _ |a Marioni, Riccardo E
|0 0000-0003-4430-4260
|b 15
700 1 _ |a Richardson, Tom G
|0 0000-0002-7918-2040
|b 16
700 1 _ |a Richmond, Rebecca C
|b 17
700 1 _ |a Eeles, Rosalind A
|b 18
700 1 _ |a Haiman, Christopher A
|b 19
700 1 _ |a Kote-Jarai, Zsofia
|b 20
700 1 _ |a Schumacher, Fredrick R
|b 21
700 1 _ |a Benlloch, Sara
|b 22
700 1 _ |a Al Olama, Ali Amin
|b 23
700 1 _ |a Muir, Kenneth R
|b 24
700 1 _ |a Berndt, Sonja I
|b 25
700 1 _ |a Conti, David V
|b 26
700 1 _ |a Wiklund, Fredrik
|b 27
700 1 _ |a Chanock, Stephen
|b 28
700 1 _ |a Wang, Ying
|b 29
700 1 _ |a Tangen, Catherine M
|b 30
700 1 _ |a Batra, Jyotsna
|b 31
700 1 _ |a Clements, Judith A
|b 32
700 1 _ |a Apcb BioResource Australian Prostate Cancer BioResource
|b 33
700 1 _ |a Grönberg, Henrik
|b 34
700 1 _ |a Pashayan, Nora
|b 35
700 1 _ |a Schleutker, Johanna
|b 36
700 1 _ |a Albanes, Demetrius
|b 37
700 1 _ |a Weinstein, Stephanie
|b 38
700 1 _ |a Wolk, Alicja
|b 39
700 1 _ |a West, Catharine M L
|b 40
700 1 _ |a Mucci, Lorelei A
|b 41
700 1 _ |a Cancel-Tassin, Géraldine
|b 42
700 1 _ |a Koutros, Stella
|b 43
700 1 _ |a Sørensen, Karina Dalsgaard
|b 44
700 1 _ |a Grindedal, Eli Marie
|b 45
700 1 _ |a Neal, David E
|b 46
700 1 _ |a Hamdy, Freddie C
|b 47
700 1 _ |a Donovan, Jenny L
|b 48
700 1 _ |a Travis, Ruth C
|b 49
700 1 _ |a Hamilton, Robert J
|b 50
700 1 _ |a Ingles, Sue Ann
|b 51
700 1 _ |a Rosenstein, Barry S
|b 52
700 1 _ |a Lu, Yong-Jie
|b 53
700 1 _ |a Giles, Graham G
|b 54
700 1 _ |a MacInnis, Robert J
|b 55
700 1 _ |a Kibel, Adam S
|b 56
700 1 _ |a Vega, Ana
|b 57
700 1 _ |a Kogevinas, Manolis
|b 58
700 1 _ |a Penney, Kathryn L
|b 59
700 1 _ |a Park, Jong Y
|b 60
700 1 _ |a Stanford, Janet L
|b 61
700 1 _ |a Cybulski, Cezary
|b 62
700 1 _ |a Nordestgaard, Børge G
|b 63
700 1 _ |a Nielsen, Sune F
|b 64
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 65
|u dkfz
700 1 _ |a Maier, Christiane
|b 66
700 1 _ |a Kim, UJeri
|b 67
700 1 _ |a John, Esther M
|b 68
700 1 _ |a Teixeira, Manuel R
|b 69
700 1 _ |a Neuhausen, Susan L
|b 70
700 1 _ |a De Ruyck, Kim
|b 71
700 1 _ |a Razack, Azad
|b 72
700 1 _ |a Newcomb, Lisa F
|b 73
700 1 _ |a Lessel, Davor
|b 74
700 1 _ |a Kaneva, Radka
|b 75
700 1 _ |a Usmani, Nawaid
|b 76
700 1 _ |a Claessens, Frank
|b 77
700 1 _ |a Townsend, Paul A
|b 78
700 1 _ |a Esteban Castelao, Jose
|b 79
700 1 _ |a Roobol, Monique J
|b 80
700 1 _ |a Menegaux, Florence
|b 81
700 1 _ |a Khaw, Kay-Tee
|b 82
700 1 _ |a Cannon-Albright, ULisa
|b 83
700 1 _ |a Pandha, Hardev
|b 84
700 1 _ |a Thibodeau, Stephen N
|b 85
700 1 _ |a Hunter, David J
|b 86
700 1 _ |a Kraft, Peter
|b 87
700 1 _ |a Blot, William J
|b 88
700 1 _ |a Riboli, Elio
|b 89
773 _ _ |a 10.7554/eLife.75374
|g Vol. 11, p. e75374
|0 PERI:(DE-600)2687154-3
|p e75374
|t eLife
|v 11
|y 2022
|x 2050-084X
909 C O |o oai:inrepo02.dkfz.de:179790
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 65
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-09-23T12:20:44Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-09-23T12:20:44Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-23
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2021
|d 2022-11-23
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21