000179882 001__ 179882
000179882 005__ 20241220120850.0
000179882 0247_ $$2doi$$a10.1002/ijc.34036
000179882 0247_ $$2pmid$$apmid:35435251
000179882 0247_ $$2ISSN$$a0020-7136
000179882 0247_ $$2ISSN$$a1097-0215
000179882 037__ $$aDKFZ-2022-00944
000179882 041__ $$aEnglish
000179882 082__ $$a610
000179882 1001_ $$0P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe$$aChen, Li-Ju$$b0$$eFirst author$$udkfz
000179882 245__ $$aIncorporation of functional status, frailty, comorbidities and comedication in prediction models for colorectal cancer survival.
000179882 260__ $$aBognor Regis$$bWiley-Liss$$c2022
000179882 3367_ $$2DRIVER$$aarticle
000179882 3367_ $$2DataCite$$aOutput Types/Journal article
000179882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656680482_3316
000179882 3367_ $$2BibTeX$$aARTICLE
000179882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179882 3367_ $$00$$2EndNote$$aJournal Article
000179882 500__ $$a#EA:C070#LA:C070# / 2022 Aug 15;151(4):539-552
000179882 520__ $$aLimitations in functional status, frailty, multiple comorbidities and comedications are common among older colorectal cancer (CRC) patients. We investigated whether adding these factors could improve the predictive value of a reference model containing age, sex, tumor stage and location for prediction of 5-year overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), recurrence-free survival (RFS) and nondisease-specific survival (nDSS) for all CRC patients as well as for younger (<65 years) and older patients (≥65 years). Overall, 3410 CRC patients from the DACHS study were analyzed and area under receiver operating characteristic curves (AUC) and net reclassification improvements (NRI) were assessed. In prediction of OS, the reference model plus functional status was identified as the best model among all CRC patients (AUC: 0.762) and younger CRC patients (AUC: 0.820). In older CRC patients, comorbidity should additionally be added (AUC: 0.747). For nDSS, the reference model plus comorbidity and frailty had the best predictive performance in all CRC patients (AUC: 0.776). For the outcomes DFS (AUC: 0.727), DSS (AUC: 0.838) and RFS (AUC: 0.784), the reference model was already the best model in all CRC patients because no significant NRIs were observed. The pattern 'The less CRC-specific the survival outcome and the older the CRC patients, the more relevant the inclusion of functional status, comorbidity, and frailty in CRC prognostic scores is' was observed. Thus, different nomograms for younger and older CRC patients for 1-, 3- and 5-year OS prognosis estimation are being suggested.
000179882 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000179882 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179882 650_7 $$2Other$$acolorectal cancer prognosis
000179882 650_7 $$2Other$$acomedication
000179882 650_7 $$2Other$$acomorbidity
000179882 650_7 $$2Other$$afrailty
000179882 650_7 $$2Other$$afunctional status
000179882 7001_ $$0P:(DE-He78)abb10265fc5b7b424eee557e979d490f$$aNguyen, Thi Ngoc Mai$$b1$$udkfz
000179882 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b2$$udkfz
000179882 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b3$$udkfz
000179882 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b4$$udkfz
000179882 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b5$$eLast author$$udkfz
000179882 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.34036$$gp. ijc.34036$$n4$$p539-552$$tInternational journal of cancer$$v151$$x0020-7136$$y2022
000179882 8767_ $$82022 (V10366)$$92022-06-23$$d2024-12-19$$eHybrid-OA$$jZahlung erfolgt
000179882 909CO $$ooai:inrepo02.dkfz.de:179882$$pVDB$$pOpenAPC$$popenCost
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)abb10265fc5b7b424eee557e979d490f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000179882 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000179882 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000179882 9141_ $$y2022
000179882 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000179882 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000179882 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000179882 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000179882 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-25$$wger
000179882 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2021$$d2022-11-25
000179882 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2021$$d2022-11-25
000179882 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000179882 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000179882 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179882 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179882 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x1
000179882 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x2
000179882 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x3
000179882 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179882 980__ $$ajournal
000179882 980__ $$aVDB
000179882 980__ $$aI:(DE-He78)C070-20160331
000179882 980__ $$aI:(DE-He78)C020-20160331
000179882 980__ $$aI:(DE-He78)C120-20160331
000179882 980__ $$aI:(DE-He78)HD01-20160331
000179882 980__ $$aUNRESTRICTED
000179882 980__ $$aAPC