Home > Publications database > Incorporation of functional status, frailty, comorbidities and comedication in prediction models for colorectal cancer survival. > print |
001 | 179882 | ||
005 | 20241220120850.0 | ||
024 | 7 | _ | |a 10.1002/ijc.34036 |2 doi |
024 | 7 | _ | |a pmid:35435251 |2 pmid |
024 | 7 | _ | |a 0020-7136 |2 ISSN |
024 | 7 | _ | |a 1097-0215 |2 ISSN |
037 | _ | _ | |a DKFZ-2022-00944 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Chen, Li-Ju |0 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe |b 0 |e First author |u dkfz |
245 | _ | _ | |a Incorporation of functional status, frailty, comorbidities and comedication in prediction models for colorectal cancer survival. |
260 | _ | _ | |a Bognor Regis |c 2022 |b Wiley-Liss |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1656680482_3316 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C070#LA:C070# / 2022 Aug 15;151(4):539-552 |
520 | _ | _ | |a Limitations in functional status, frailty, multiple comorbidities and comedications are common among older colorectal cancer (CRC) patients. We investigated whether adding these factors could improve the predictive value of a reference model containing age, sex, tumor stage and location for prediction of 5-year overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), recurrence-free survival (RFS) and nondisease-specific survival (nDSS) for all CRC patients as well as for younger (<65 years) and older patients (≥65 years). Overall, 3410 CRC patients from the DACHS study were analyzed and area under receiver operating characteristic curves (AUC) and net reclassification improvements (NRI) were assessed. In prediction of OS, the reference model plus functional status was identified as the best model among all CRC patients (AUC: 0.762) and younger CRC patients (AUC: 0.820). In older CRC patients, comorbidity should additionally be added (AUC: 0.747). For nDSS, the reference model plus comorbidity and frailty had the best predictive performance in all CRC patients (AUC: 0.776). For the outcomes DFS (AUC: 0.727), DSS (AUC: 0.838) and RFS (AUC: 0.784), the reference model was already the best model in all CRC patients because no significant NRIs were observed. The pattern 'The less CRC-specific the survival outcome and the older the CRC patients, the more relevant the inclusion of functional status, comorbidity, and frailty in CRC prognostic scores is' was observed. Thus, different nomograms for younger and older CRC patients for 1-, 3- and 5-year OS prognosis estimation are being suggested. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a colorectal cancer prognosis |2 Other |
650 | _ | 7 | |a comedication |2 Other |
650 | _ | 7 | |a comorbidity |2 Other |
650 | _ | 7 | |a frailty |2 Other |
650 | _ | 7 | |a functional status |2 Other |
700 | 1 | _ | |a Nguyen, Thi Ngoc Mai |0 P:(DE-He78)abb10265fc5b7b424eee557e979d490f |b 1 |u dkfz |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 2 |u dkfz |
700 | 1 | _ | |a Hoffmeister, Michael |0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |b 3 |u dkfz |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 4 |u dkfz |
700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 5 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/ijc.34036 |g p. ijc.34036 |0 PERI:(DE-600)1474822-8 |n 4 |p 539-552 |t International journal of cancer |v 151 |y 2022 |x 0020-7136 |
909 | C | O | |o oai:inrepo02.dkfz.de:179882 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)abb10265fc5b7b424eee557e979d490f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-02-04 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-04 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-04 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-04 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-25 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-25 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-25 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J CANCER : 2021 |d 2022-11-25 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J CANCER : 2021 |d 2022-11-25 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
920 | 2 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 1 |
920 | 1 | _ | |0 I:(DE-He78)C120-20160331 |k C120 |l Präventive Onkologie |x 2 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 3 |
920 | 0 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a I:(DE-He78)C120-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|