001     179882
005     20241220120850.0
024 7 _ |a 10.1002/ijc.34036
|2 doi
024 7 _ |a pmid:35435251
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
037 _ _ |a DKFZ-2022-00944
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Chen, Li-Ju
|0 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe
|b 0
|e First author
|u dkfz
245 _ _ |a Incorporation of functional status, frailty, comorbidities and comedication in prediction models for colorectal cancer survival.
260 _ _ |a Bognor Regis
|c 2022
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1656680482_3316
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / 2022 Aug 15;151(4):539-552
520 _ _ |a Limitations in functional status, frailty, multiple comorbidities and comedications are common among older colorectal cancer (CRC) patients. We investigated whether adding these factors could improve the predictive value of a reference model containing age, sex, tumor stage and location for prediction of 5-year overall survival (OS), disease-free survival (DFS), disease-specific survival (DSS), recurrence-free survival (RFS) and nondisease-specific survival (nDSS) for all CRC patients as well as for younger (<65 years) and older patients (≥65 years). Overall, 3410 CRC patients from the DACHS study were analyzed and area under receiver operating characteristic curves (AUC) and net reclassification improvements (NRI) were assessed. In prediction of OS, the reference model plus functional status was identified as the best model among all CRC patients (AUC: 0.762) and younger CRC patients (AUC: 0.820). In older CRC patients, comorbidity should additionally be added (AUC: 0.747). For nDSS, the reference model plus comorbidity and frailty had the best predictive performance in all CRC patients (AUC: 0.776). For the outcomes DFS (AUC: 0.727), DSS (AUC: 0.838) and RFS (AUC: 0.784), the reference model was already the best model in all CRC patients because no significant NRIs were observed. The pattern 'The less CRC-specific the survival outcome and the older the CRC patients, the more relevant the inclusion of functional status, comorbidity, and frailty in CRC prognostic scores is' was observed. Thus, different nomograms for younger and older CRC patients for 1-, 3- and 5-year OS prognosis estimation are being suggested.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a colorectal cancer prognosis
|2 Other
650 _ 7 |a comedication
|2 Other
650 _ 7 |a comorbidity
|2 Other
650 _ 7 |a frailty
|2 Other
650 _ 7 |a functional status
|2 Other
700 1 _ |a Nguyen, Thi Ngoc Mai
|0 P:(DE-He78)abb10265fc5b7b424eee557e979d490f
|b 1
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 2
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 3
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 4
|u dkfz
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.34036
|g p. ijc.34036
|0 PERI:(DE-600)1474822-8
|n 4
|p 539-552
|t International journal of cancer
|v 151
|y 2022
|x 0020-7136
909 C O |o oai:inrepo02.dkfz.de:179882
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ad44271ecf6b1eec3e0d0089c66dfdbe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)abb10265fc5b7b424eee557e979d490f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2021
|d 2022-11-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2021
|d 2022-11-25
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21