001     179931
005     20240229145559.0
024 7 _ |a 10.1111/acel.13608
|2 doi
024 7 _ |a pmid:35546478
|2 pmid
024 7 _ |a 1474-9718
|2 ISSN
024 7 _ |a 1474-9726
|2 ISSN
024 7 _ |a 1474-9728
|2 ISSN
024 7 _ |a altmetric:128139924
|2 altmetric
037 _ _ |a DKFZ-2022-00980
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Huan, Tianxiao
|b 0
245 _ _ |a Integrative analysis of clinical and epigenetic biomarkers of mortality.
260 _ _ |a Oxford [u.a.]
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1656681242_3318
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Jun;21(6):e13608
520 _ _ |a DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10-7 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, PMR = 4.1 × 10-4 ) and negatively associated with longevity (Beta = -1.9, PMR = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a cancer
|2 Other
650 _ 7 |a cardiovascular disease
|2 Other
650 _ 7 |a machine learning
|2 Other
650 _ 7 |a mortality
|2 Other
700 1 _ |a Nguyen, Steve
|b 1
700 1 _ |a Colicino, Elena
|b 2
700 1 _ |a Ochoa-Rosales, Carolina
|b 3
700 1 _ |a Hill, W David
|b 4
700 1 _ |a Brody, Jennifer A
|b 5
700 1 _ |a Soerensen, Mette
|b 6
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
|b 7
700 1 _ |a Baldassari, Antoine
|b 8
700 1 _ |a Elhadad, Mohamed Ahmed
|b 9
700 1 _ |a Toshiko, Tanaka
|b 10
700 1 _ |a Zheng, Yinan
|b 11
700 1 _ |a Domingo-Relloso, Arce
|b 12
700 1 _ |a Lee, Dong Heon
|b 13
700 1 _ |a Ma, Jiantao
|b 14
700 1 _ |a Yao, Chen
|b 15
700 1 _ |a Liu, Chunyu
|b 16
700 1 _ |a Hwang, Shih-Jen
|b 17
700 1 _ |a Joehanes, Roby
|b 18
700 1 _ |a Fornage, Myriam
|b 19
700 1 _ |a Bressler, Jan
|b 20
700 1 _ |a van Meurs, Joyce B J
|b 21
700 1 _ |a Debrabant, Birgit
|b 22
700 1 _ |a Mengel-From, Jonas
|b 23
700 1 _ |a Hjelmborg, Jacob
|b 24
700 1 _ |a Christensen, Kaare
|b 25
700 1 _ |a Vokonas, Pantel
|b 26
700 1 _ |a Schwartz, Joel
|b 27
700 1 _ |a Gahrib, Sina A
|b 28
700 1 _ |a Sotoodehnia, Nona
|b 29
700 1 _ |a Sitlani, Colleen M
|b 30
700 1 _ |a Kunze, Sonja
|b 31
700 1 _ |a Gieger, Christian
|b 32
700 1 _ |a Peters, Annette
|b 33
700 1 _ |a Waldenberger, Melanie
|b 34
700 1 _ |a Deary, Ian J
|b 35
700 1 _ |a Ferrucci, Luigi
|b 36
700 1 _ |a Qu, Yishu
|b 37
700 1 _ |a Greenland, Philip
|b 38
700 1 _ |a Lloyd-Jones, Donald M
|b 39
700 1 _ |a Hou, Lifang
|b 40
700 1 _ |a Bandinelli, Stefania
|b 41
700 1 _ |a Voortman, Trudy
|b 42
700 1 _ |a Hermann, Brenner
|b 43
700 1 _ |a Baccarelli, Andrea
|b 44
700 1 _ |a Whitsel, Eric
|b 45
700 1 _ |a Pankow, James S
|b 46
700 1 _ |a Levy, Daniel
|0 0000-0003-1843-8724
|b 47
773 _ _ |a 10.1111/acel.13608
|0 PERI:(DE-600)2099130-7
|n 6
|p e13608
|t Aging cell
|v 21
|y 2022
|x 1474-9718
909 C O |p VDB
|o oai:inrepo02.dkfz.de:179931
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2018-07-06T16:06:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2018-07-06T16:06:27Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2018-07-06T16:06:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AGING CELL : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-08
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b AGING CELL : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21