Home > Publications database > Predictive modeling of resistance to SMO inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. > print |
001 | 179951 | ||
005 | 20240229145600.0 | ||
024 | 7 | _ | |a 10.1093/noajnl/vdac026 |2 doi |
024 | 7 | _ | |a pmid:35475274 |2 pmid |
024 | 7 | _ | |a pmc:PMC9034118 |2 pmc |
024 | 7 | _ | |a altmetric:124608296 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-01000 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Krausert, Sonja |0 P:(DE-He78)6e11760c6fdd0c35cd056cf36243ecd5 |b 0 |e First author |
245 | _ | _ | |a Predictive modeling of resistance to SMO inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. |
260 | _ | _ | |a Oxford |c 2022 |b Oxford University Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1677657915_27753 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:B062#LA:B062# / 2022 Mar 13;4(1):vdac026 |
520 | _ | _ | |a Inhibition of the sonic hedgehog (SHH) pathway with Smoothened (SMO) inhibitors is a promising treatment strategy in SHH-activated medulloblastoma, especially in adult patients. However, the problem is that tumors frequently acquire resistance to the treatment. To understand the underlying resistance mechanisms and to find ways to overcome the resistance, preclinical models that became resistant to SMO inhibition are needed.To induce SMO inhibitor resistant tumors, we have treated a patient-derived xenograft (PDX) model of SHH medulloblastoma, sensitive to SMO inhibition, with 20 mg/kg Sonidegib using an intermitted treatment schedule. Vehicle-treated and resistant models were subjected to whole-genome and RNA sequencing for molecular characterization and target engagement. In vitro drug screens (76 drugs) were performed using Sonidegib-sensitive and -resistant lines to find other drugs to target the resistant lines. One of the top hits was then validated in vivo.Nine independent Sonidegib-resistant PDX lines were generated. Molecular characterization of the resistant models showed that eight models developed missense mutations in SMO and one gained an inactivating point mutation in MEGF8, which acts downstream of SMO as a repressor in the SHH pathway. The in vitro drug screen with Sonidegib-sensitive and -resistant lines identified good efficacy for Selinexor in the resistant line. Indeed, in vivo treatment with Selinexor revealed that it is more effective in resistant than in sensitive models.We report the first human SMO inhibitor resistant medulloblastoma PDX models, which can be used for further preclinical experiments to develop the best strategies to overcome the resistance to SMO inhibitors in patients. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a SHH Medulloblastoma |2 Other |
650 | _ | 7 | |a SMO inhibitor |2 Other |
650 | _ | 7 | |a Selinexor |2 Other |
650 | _ | 7 | |a Sonidegib |2 Other |
650 | _ | 7 | |a resistance |2 Other |
700 | 1 | _ | |a Brabetz, Sebastian |0 P:(DE-He78)b0b3740107f746e09dc23fdf25eb0629 |b 1 |e First author |
700 | 1 | _ | |a Mack, Norman L |0 P:(DE-He78)e73a0a4fab40344d89d693cbe1df3109 |b 2 |
700 | 1 | _ | |a Schmitt-Hoffner, Felix |0 P:(DE-He78)fce464e68d8888e5e7be72b7a197bca7 |b 3 |
700 | 1 | _ | |a Schwalm, Benjamin |0 P:(DE-He78)9ce969bf1ac7913b3f2b1cf4dd7f823e |b 4 |
700 | 1 | _ | |a Peterziel, Heike |0 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e |b 5 |
700 | 1 | _ | |a Mangang, Aileen |0 P:(DE-He78)6e122c2e77e540ca21733dea44551034 |b 6 |
700 | 1 | _ | |a Holland-Letz, Tim |0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |b 7 |
700 | 1 | _ | |a Sieber, Laura |0 P:(DE-He78)a4101d4d75f0b7d1f24f67ccbe63164b |b 8 |
700 | 1 | _ | |a Korshunov, Andrey |0 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93 |b 9 |
700 | 1 | _ | |a Oehme, Ina |0 P:(DE-He78)908367a659dea9e28dac34592b3c46e5 |b 10 |
700 | 1 | _ | |a Jäger, Natalie |0 P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3 |b 11 |
700 | 1 | _ | |a Witt, Olaf |0 P:(DE-He78)143af26de9d57bf624771616318aaf7c |b 12 |
700 | 1 | _ | |a Pfister, Stefan M |0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |b 13 |
700 | 1 | _ | |a Kool, Marcel |0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8 |b 14 |e Last author |
773 | _ | _ | |a 10.1093/noajnl/vdac026 |g Vol. 4, no. 1, p. vdac026 |0 PERI:(DE-600)3009682-0 |n 1 |p vdac026 |t Neuro-oncology advances |v 4 |y 2022 |x 2632-2498 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:179951 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)6e11760c6fdd0c35cd056cf36243ecd5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)b0b3740107f746e09dc23fdf25eb0629 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)e73a0a4fab40344d89d693cbe1df3109 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)fce464e68d8888e5e7be72b7a197bca7 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)9ce969bf1ac7913b3f2b1cf4dd7f823e |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)6e122c2e77e540ca21733dea44551034 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)a4101d4d75f0b7d1f24f67ccbe63164b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)8d9c904a6cea14d4c99c78ba46e41f93 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)908367a659dea9e28dac34592b3c46e5 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)bff9e3e3d86865d2b0836bb8f3ce98f3 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)143af26de9d57bf624771616318aaf7c |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 14 |6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version) |0 LIC:(DE-HGF)CCBYNCNV |2 V:(DE-HGF) |b DOAJ |d 2020-09-05 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-05 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-09-23T13:25:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-09-23T13:25:59Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-09-23T13:25:59Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2022-11-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-12 |
920 | 2 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l B062 Pädiatrische Neuroonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l B062 Pädiatrische Neuroonkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)HD01-20160331 |k HD01 |l DKTK HD zentral |x 1 |
920 | 1 | _ | |0 I:(DE-He78)B310-20160331 |k B310 |l KKE Pädiatrische Onkologie |x 2 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 3 |
920 | 1 | _ | |0 I:(DE-He78)B300-20160331 |k B300 |l KKE Neuropathologie |x 4 |
920 | 0 | _ | |0 I:(DE-He78)B062-20160331 |k B062 |l B062 Pädiatrische Neuroonkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B062-20160331 |
980 | _ | _ | |a I:(DE-He78)HD01-20160331 |
980 | _ | _ | |a I:(DE-He78)B310-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)B300-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|