001     180070
005     20240229145604.0
024 7 _ |a 10.1016/j.media.2022.102474
|2 doi
024 7 _ |a pmid:35588568
|2 pmid
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a altmetric:127726563
|2 altmetric
037 _ _ |a DKFZ-2022-01069
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ghaffari Laleh, Narmin
|b 0
245 _ _ |a Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653654265_14779
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Artificial intelligence (AI) can extract visual information from histopathological slides and yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of tiles and classification problems are often weakly-supervised: the ground truth is only known for the slide, not for every single tile. In classical weakly-supervised analysis pipelines, all tiles inherit the slide label while in multiple-instance learning (MIL), only bags of tiles inherit the label. However, it is still unclear how these widely used but markedly different approaches perform relative to each other. We implemented and systematically compared six methods in six clinically relevant end-to-end prediction tasks using data from N=2980 patients for training with rigorous external validation. We tested three classical weakly-supervised approaches with convolutional neural networks and vision transformers (ViT) and three MIL-based approaches with and without an additional attention module. Our results empirically demonstrate that histological tumor subtyping of renal cell carcinoma is an easy task in which all approaches achieve an area under the receiver operating curve (AUROC) of above 0.9. In contrast, we report significant performance differences for clinically relevant tasks of mutation prediction in colorectal, gastric, and bladder cancer. In these mutation prediction tasks, classical weakly-supervised workflows outperformed MIL-based weakly-supervised methods for mutation prediction, which is surprising given their simplicity. This shows that new end-to-end image analysis pipelines in computational pathology should be compared to classical weakly-supervised methods. Also, these findings motivate the development of new methods which combine the elegant assumptions of MIL with the empirically observed higher performance of classical weakly-supervised approaches. We make all source codes publicly available at https://github.com/KatherLab/HIA, allowing easy application of all methods to any similar task.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Computational pathology
|2 Other
650 _ 7 |a Convolutional neural networks
|2 Other
650 _ 7 |a Multiple-Instance Learning
|2 Other
650 _ 7 |a Vision transformers
|2 Other
650 _ 7 |a Weakly-supervised deep learning
|2 Other
700 1 _ |a Muti, Hannah Sophie
|b 1
700 1 _ |a Loeffler, Chiara Maria Lavinia
|b 2
700 1 _ |a Echle, Amelie
|b 3
700 1 _ |a Saldanha, Oliver Lester
|b 4
700 1 _ |a Mahmood, Faisal
|b 5
700 1 _ |a Lu, Ming Y
|b 6
700 1 _ |a Trautwein, Christian
|b 7
700 1 _ |a Langer, Rupert
|b 8
700 1 _ |a Dislich, Bastian
|b 9
700 1 _ |a Buelow, Roman D
|b 10
700 1 _ |a Grabsch, Heike Irmgard
|b 11
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 13
|u dkfz
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 14
|u dkfz
700 1 _ |a Brinker, Titus J
|0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
|b 15
|u dkfz
700 1 _ |a Khader, Firas
|b 16
700 1 _ |a Truhn, Daniel
|b 17
700 1 _ |a Gaisa, Nadine T
|b 18
700 1 _ |a Boor, Peter
|b 19
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 20
|u dkfz
700 1 _ |a Schulz, Volkmar
|b 21
700 1 _ |a Kather, Jakob Nikolas
|b 22
773 _ _ |a 10.1016/j.media.2022.102474
|g Vol. 79, p. 102474 -
|0 PERI:(DE-600)1497450-2
|p 102474
|t Medical image analysis
|v 79
|y 2022
|x 1361-8415
909 C O |o oai:inrepo02.dkfz.de:180070
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MED IMAGE ANAL : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 3
920 1 _ |0 I:(DE-He78)C140-20160331
|k C140
|l NWG Digitale Biomarker in der Onkologie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C140-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21