000180106 001__ 180106 000180106 005__ 20240229145605.0 000180106 0247_ $$2pmid$$apmid:35618480 000180106 0247_ $$2ISSN$$a0097-9058 000180106 0247_ $$2ISSN$$a0161-5505 000180106 0247_ $$2ISSN$$a1535-5667 000180106 0247_ $$2ISSN$$a0022-3123 000180106 0247_ $$2doi$$a10.2967/jnumed.122.264069 000180106 0247_ $$2doi$$aDOI: 10.2967/jnumed.122.264069 000180106 0247_ $$2altmetric$$aaltmetric:128974059 000180106 037__ $$aDKFZ-2022-01099 000180106 041__ $$aEnglish 000180106 082__ $$a610 000180106 1001_ $$0P:(DE-He78)1fc3c2327d9c213c36fe740ef63e1baa$$aGlatting, Frederik Marcel$$b0$$eFirst author$$udkfz 000180106 245__ $$aRepetitive early FAPI-PET acquisition comparing FAPI-02, FAPI-46 and FAPI-74: methodological and diagnostic implications for malignant, inflammatory and degenerative lesions. 000180106 260__ $$aReston, Va.$$bSNM$$c2022 000180106 264_1 $$2Crossref$$3online$$bSociety of Nuclear Medicine$$c2022-05-26 000180106 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2022-12-01 000180106 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2022-12-01 000180106 3367_ $$2DRIVER$$aarticle 000180106 3367_ $$2DataCite$$aOutput Types/Journal article 000180106 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670248105_22851 000180106 3367_ $$2BibTeX$$aARTICLE 000180106 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000180106 3367_ $$00$$2EndNote$$aJournal Article 000180106 500__ $$a#EA:E055# / 2022 Dec;63(12):1844-1851 000180106 520__ $$aPurpose: FAPI-PET imaging targets FAP-positive, activated fibroblasts and is a promising imaging technique for various types of cancer and non-malignant pathologies. However, the discrimination between malignant and non-malignant FAPI-positive lesions based on static PET imaging with one acquisition timepoint can be challenging. Additionally, the optimal imaging timepoint for FAPI-PET has not been identified yet and even different FAPI tracer variants are currently used. In this retrospective analysis, we evaluate the diagnostic value of repetitive early FAPI-PET-imaging with FAPI-02, FAPI-46 and FAPI-74 for malignant, inflammatory and degenerative lesions and describe implications for future FAPI imaging protocols. Methods: Whole-body PET-Scans of 24 cancer patients were acquired at 10, 22, 34, 46 and 58 minutes after the administration of 150-250 MBq of 68Ga-FAPI tracer molecules (8 Patients each regarding FAPI-02, FAPI-46 and FAPI-74). Detection rates and standardized uptake values (SUVmax and SUVmean) of healthy tissues, cancer manifestations and non-malignant lesions were measured and target-to-background ratios (TBR) versus blood and fat were calculated for all acquisition timepoints. Results: For most healthy tissues except fat and spinal canal, biodistribution analysis showed decreasing tracer uptake over time. 134 malignant, inflammatory/reactive and degenerative lesions were analysed. Detection rates were minimally reduced for the first two acquisition timepoints and remained on a constant high level from 34 to 58 minutes post injection (p.i.). The uptake of all three tracer variants was higher in malignant and inflammatory lesions than in degenerative lesions. FAPI-46 showed the highest uptake and TBRs in all pathologies. For all tracer variants, TBRs versus blood of all pathologies constantly increased over time and TBRs versus fat were constant or decreased slightly. Conclusion: FAPI-PET/CT is a promising imaging modality for malignancies and benign lesions. Repetitive early PET acquisition added diagnostic value for the discrimination of malignant and non-malignant FAPI-positive lesions. High detection rates and TBRs over time confirm that PET acquisition at timepoints earlier than 60 minutes p.i. deliver high contrast images. Additionally, considering clinical feasibility, acquisition at 30 to 40 min p.i. could be a reasonable compromise. Different FAPI tracer variants show significant differences in their time-dependent biodistributional behaviour and should be selected carefully depending on the clinical setting. 000180106 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000180106 588__ $$aDataset connected to DataCite, PubMed, , Journals: inrepo02.dkfz.de 000180106 650_7 $$2Other$$aBiodistribution 000180106 650_7 $$2Other$$aCancer 000180106 650_7 $$2Other$$aFAPI 000180106 650_7 $$2Other$$aFibroblast Activation Protein 000180106 650_7 $$2Other$$aOncology: Pancreas 000180106 650_7 $$2Other$$aPET 000180106 650_7 $$2Other$$aRadiotracer Tissue Kinetics 000180106 7001_ $$aHoppner, Jorge$$b1 000180106 7001_ $$aLiew, Dawn P$$b2 000180106 7001_ $$avan Genabith, Antonia$$b3 000180106 7001_ $$aSpektor, Anna-Maria$$b4 000180106 7001_ $$aSteinbach, Levin$$b5 000180106 7001_ $$aHubert, Alexander$$b6 000180106 7001_ $$aKratochwil, Clemens$$b7 000180106 7001_ $$aGiesel, Frederik L$$b8 000180106 7001_ $$aDendl, Katharina$$b9 000180106 7001_ $$aRathke, Hendrik$$b10 000180106 7001_ $$aKauczor, Hans-Ulrich$$b11 000180106 7001_ $$0P:(DE-He78)3291aaac20f3d603d96744c1f0890028$$aHuber, Peter E$$b12 000180106 7001_ $$0P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aHaberkorn, Uwe A$$b13$$udkfz 000180106 7001_ $$aRöhrich, Manuel$$b14 000180106 77318 $$2Crossref$$3journal-article$$a10.2967/jnumed.122.264069$$bSociety of Nuclear Medicine$$d2022-05-26$$n12$$p1844-1851$$tJournal of Nuclear Medicine$$v63$$x0161-5505$$y2022 000180106 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.122.264069$$n12$$p1844-1851$$tJournal of nuclear medicine$$v63$$x0161-5505$$y2022 000180106 909CO $$ooai:inrepo02.dkfz.de:180106$$pVDB 000180106 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1fc3c2327d9c213c36fe740ef63e1baa$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000180106 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3291aaac20f3d603d96744c1f0890028$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ 000180106 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)13a0afba029f5f64dc18b25ef7499558$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ 000180106 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000180106 9141_ $$y2022 000180106 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2021$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-19 000180106 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ NUCL MED : 2021$$d2022-11-19 000180106 9201_ $$0I:(DE-He78)E055-20160331$$kE055$$lE055 KKE Molekulare Radioonkologie$$x0 000180106 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x1 000180106 9200_ $$0I:(DE-He78)E055-20160331$$kE055$$lE055 KKE Molekulare Radioonkologie$$x0 000180106 980__ $$ajournal 000180106 980__ $$aVDB 000180106 980__ $$aI:(DE-He78)E055-20160331 000180106 980__ $$aI:(DE-He78)E060-20160331 000180106 980__ $$aUNRESTRICTED 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1242/dmm.029447 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nrc.2016.73 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41568-019-0238-1 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-020-2938-9 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev-pathol-052016-100322 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.120.253062 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.semcdb.2019.12.006 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.119.227967 000180106 999C5 $$1Chen$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-020-04769-z$$p1820 -$$tEur J Nucl Med Mol Imaging.$$v47$$y2020 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.120.244723 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1136/annrheumdis-2020-217408 000180106 999C5 $$1Zhou$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-021-05343-x$$p3493 -$$tEur J Nucl Med Mol Imaging.$$v48$$y2021 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.121.261925 000180106 999C5 $$1Qin$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-021-05472-3$$p709 -$$tEur J Nucl Med Mol Imaging.$$v49$$y2022 000180106 999C5 $$1Liu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-020-05090-5$$p1671 -$$tEur J Nucl Med Mol Imaging.$$v48$$y2021 000180106 999C5 $$1Hu$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-021-05646-z$$p2833 -$$tEur J Nucl Med Mol Imaging.$$v49$$y2022 000180106 999C5 $$1Wang$$2Crossref$$9-- missing cx lookup --$$a10.3389/fonc.2021.651005$$p651005 -$$tFront Oncol.$$v11$$y2021 000180106 999C5 $$1Ferdinandus$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00259-021-05266-7$$p3221 -$$tEur J Nucl Med Mol Imaging.$$v48$$y2021 000180106 999C5 $$1Geist$$2Crossref$$9-- missing cx lookup --$$a10.1186/s40658-021-00353-y$$p8 -$$tEJNMMI Phys.$$v8$$y2021 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.2967/jnumed.118.224469 000180106 999C5 $$1Röhrich$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.radonc.2021.04.016$$p192 -$$tRadiother Oncol.$$v160$$y2021 000180106 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2559.2009.03399.x