000180173 001__ 180173
000180173 005__ 20240229145608.0
000180173 0247_ $$2doi$$a10.1016/j.ebiom.2022.104083
000180173 0247_ $$2pmid$$apmid:35636319
000180173 0247_ $$2altmetric$$aaltmetric:129069466
000180173 037__ $$aDKFZ-2022-01145
000180173 041__ $$aEnglish
000180173 082__ $$a610
000180173 1001_ $$0P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b$$aLi, Xiangwei$$b0$$eFirst author$$udkfz
000180173 245__ $$aAssociations of DNA methylation algorithms of aging and cancer risk: Results from a prospective cohort study.
000180173 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2022
000180173 3367_ $$2DRIVER$$aarticle
000180173 3367_ $$2DataCite$$aOutput Types/Journal article
000180173 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1654172618_19461
000180173 3367_ $$2BibTeX$$aARTICLE
000180173 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180173 3367_ $$00$$2EndNote$$aJournal Article
000180173 500__ $$a#EA:C070#LA:C070#LA:C120#
000180173 520__ $$aPrevious studies have shown that three DNA methylation (DNAm) based algorithms of aging, DNAm PhenoAge acceleration (AgeAccelPheno), DNAm GrimAge acceleration (AgeAccelGrim), and mortality risk score (MRscore), to be strong predictors of mortality and aging related outcomes. We aimed to investigate if and to what extent these algorithms predict cancer.In four subsets (n = 727, 1003, 910, and 412) of a population-based cohort from Germany, DNA methylation in whole blood was measured using the Infinium Methylation EPIC BeadChip kit or the Infinium HumanMethylation450K BeadChip Assay (Illumina.Inc, San Diego, CA, USA). AgeAccelPheno, AgeAccelGrim, and a revised MRscore based on 8 CpGs only (MRscore-8CpGs), were calculated. Hazard ratios (HRs) were calculated to assess associations of the three DNAm algorithms with total cancer risk and risk of invasive breast, lung, prostate, and colorectal cancer incidence.During 17 years of follow-up, a total of 697 malignant tumors (thereof breast cancer = 75, lung cancer = 146, prostate cancer = 114, colorectal cancer = 155) were observed. All three algorithms showed strong positive associations with lung cancer risk in a dose response manner, with adjusted HRs per SD increase in AgeAccelPheno, AgeAccelGrim, and MRscore-8CpGs, of 1·37 (1·03-1·82), 1·74 (1·11-2·73), and 2·06 (1·39-3·06), respectively. By contrast, strong inverse associations were seen with breast cancer risk [adjusted HRs 0·65 (0·49-0·86), 0·45 (0·25-0·80), and 0·42 (0·25-0·70), respectively]. Weak positive associations of MRscore-8CpGs were seen with total cancer risk.The DNAm algorithms, particularly the MRscore-8CpGs, have potential to contribute to site-specific cancer risk prediction.The ESTHER study was funded by grants from the Baden-Württemberg state Ministry of Science, Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany), the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany), and the Saarland State Ministry of Health, Social Affairs, Women and the Family (Saarbrücken, Germany). The work of Xiangwei Li was supported by a grant from Fondazione Cariplo (Bando Ricerca Malattie invecchiamento, #2017-0653).
000180173 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000180173 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180173 650_7 $$2Other$$aAge acceleration
000180173 650_7 $$2Other$$aCancer risk
000180173 650_7 $$2Other$$aDNA methylation
000180173 650_7 $$2Other$$aEpigenetic clock
000180173 7001_ $$0P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aSchöttker, Ben$$b1$$udkfz
000180173 7001_ $$0P:(DE-He78)53e1a2846c69064e27790dbf349ccaec$$aHolleczek, Bernd$$b2$$udkfz
000180173 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b3$$eLast author$$udkfz
000180173 773__ $$0PERI:(DE-600)2799017-5$$a10.1016/j.ebiom.2022.104083$$gVol. 81, p. 104083 -$$p104083$$tEBioMedicine$$v81$$x2352-3964$$y2022
000180173 909CO $$ooai:inrepo02.dkfz.de:180173$$pVDB
000180173 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000180173 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c67a12496b8aac150c0eef888d808d46$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000180173 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)53e1a2846c69064e27790dbf349ccaec$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000180173 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000180173 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000180173 9141_ $$y2022
000180173 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2021-02-03
000180173 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000180173 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000180173 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000180173 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000180173 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEBIOMEDICINE : 2021$$d2022-11-25
000180173 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000180173 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000180173 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-26T13:10:09Z
000180173 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-26T13:10:09Z
000180173 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-26T13:10:09Z
000180173 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000180173 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000180173 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEBIOMEDICINE : 2021$$d2022-11-25
000180173 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000180173 9202_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000180173 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000180173 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000180173 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000180173 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000180173 980__ $$ajournal
000180173 980__ $$aVDB
000180173 980__ $$aI:(DE-He78)C070-20160331
000180173 980__ $$aI:(DE-He78)C120-20160331
000180173 980__ $$aI:(DE-He78)HD01-20160331
000180173 980__ $$aUNRESTRICTED