001     180173
005     20240229145608.0
024 7 _ |a 10.1016/j.ebiom.2022.104083
|2 doi
024 7 _ |a pmid:35636319
|2 pmid
024 7 _ |a altmetric:129069466
|2 altmetric
037 _ _ |a DKFZ-2022-01145
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Li, Xiangwei
|0 P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b
|b 0
|e First author
|u dkfz
245 _ _ |a Associations of DNA methylation algorithms of aging and cancer risk: Results from a prospective cohort study.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654172618_19461
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#LA:C120#
520 _ _ |a Previous studies have shown that three DNA methylation (DNAm) based algorithms of aging, DNAm PhenoAge acceleration (AgeAccelPheno), DNAm GrimAge acceleration (AgeAccelGrim), and mortality risk score (MRscore), to be strong predictors of mortality and aging related outcomes. We aimed to investigate if and to what extent these algorithms predict cancer.In four subsets (n = 727, 1003, 910, and 412) of a population-based cohort from Germany, DNA methylation in whole blood was measured using the Infinium Methylation EPIC BeadChip kit or the Infinium HumanMethylation450K BeadChip Assay (Illumina.Inc, San Diego, CA, USA). AgeAccelPheno, AgeAccelGrim, and a revised MRscore based on 8 CpGs only (MRscore-8CpGs), were calculated. Hazard ratios (HRs) were calculated to assess associations of the three DNAm algorithms with total cancer risk and risk of invasive breast, lung, prostate, and colorectal cancer incidence.During 17 years of follow-up, a total of 697 malignant tumors (thereof breast cancer = 75, lung cancer = 146, prostate cancer = 114, colorectal cancer = 155) were observed. All three algorithms showed strong positive associations with lung cancer risk in a dose response manner, with adjusted HRs per SD increase in AgeAccelPheno, AgeAccelGrim, and MRscore-8CpGs, of 1·37 (1·03-1·82), 1·74 (1·11-2·73), and 2·06 (1·39-3·06), respectively. By contrast, strong inverse associations were seen with breast cancer risk [adjusted HRs 0·65 (0·49-0·86), 0·45 (0·25-0·80), and 0·42 (0·25-0·70), respectively]. Weak positive associations of MRscore-8CpGs were seen with total cancer risk.The DNAm algorithms, particularly the MRscore-8CpGs, have potential to contribute to site-specific cancer risk prediction.The ESTHER study was funded by grants from the Baden-Württemberg state Ministry of Science, Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany), the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany), and the Saarland State Ministry of Health, Social Affairs, Women and the Family (Saarbrücken, Germany). The work of Xiangwei Li was supported by a grant from Fondazione Cariplo (Bando Ricerca Malattie invecchiamento, #2017-0653).
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Age acceleration
|2 Other
650 _ 7 |a Cancer risk
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Epigenetic clock
|2 Other
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 1
|u dkfz
700 1 _ |a Holleczek, Bernd
|0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
|b 2
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.ebiom.2022.104083
|g Vol. 81, p. 104083 -
|0 PERI:(DE-600)2799017-5
|p 104083
|t EBioMedicine
|v 81
|y 2022
|x 2352-3964
909 C O |o oai:inrepo02.dkfz.de:180173
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:10:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-26T13:10:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EBIOMEDICINE : 2021
|d 2022-11-25
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 2 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21