001     180190
005     20240229145609.0
024 7 _ |a 10.1016/j.adro.2021.100890
|2 doi
024 7 _ |a pmid:35647396
|2 pmid
024 7 _ |a pmc:PMC9133391
|2 pmc
024 7 _ |a altmetric:120903094
|2 altmetric
037 _ _ |a DKFZ-2022-01162
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Aldraimli, Mahmoud
|b 0
245 _ _ |a Development and Optimization of a Machine-Learning Prediction Model for Acute Desquamation After Breast Radiation Therapy in the Multicenter REQUITE Cohort.
260 _ _ |a Amsterdam
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654178868_19462
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Some patients with breast cancer treated by surgery and radiation therapy experience clinically significant toxicity, which may adversely affect cosmesis and quality of life. There is a paucity of validated clinical prediction models for radiation toxicity. We used machine learning (ML) algorithms to develop and optimise a clinical prediction model for acute breast desquamation after whole breast external beam radiation therapy in the prospective multicenter REQUITE cohort study.Using demographic and treatment-related features (m = 122) from patients (n = 2058) at 26 centers, we trained 8 ML algorithms with 10-fold cross-validation in a 50:50 random-split data set with class stratification to predict acute breast desquamation. Based on performance in the validation data set, the logistic model tree, random forest, and naïve Bayes models were taken forward to cost-sensitive learning optimisation.One hundred and ninety-two patients experienced acute desquamation. Resampling and cost-sensitive learning optimisation facilitated an improvement in classification performance. Based on maximising sensitivity (true positives), the 'hero' model was the cost-sensitive random forest algorithm with a false-negative: false-positive misclassification penalty of 90:1 containing m = 114 predictive features. Model sensitivity and specificity were 0.77 and 0.66, respectively, with an area under the curve of 0.77 in the validation cohort.ML algorithms with resampling and cost-sensitive learning generated clinically valid prediction models for acute desquamation using patient demographic and treatment features. Further external validation and inclusion of genomic markers in ML prediction models are worthwhile, to identify patients at increased risk of toxicity who may benefit from supportive intervention or even a change in treatment plan.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Osman, Sarah
|b 1
700 1 _ |a Grishchuck, Diana
|b 2
700 1 _ |a Ingram, Samuel
|b 3
700 1 _ |a Lyon, Robert
|b 4
700 1 _ |a Mistry, Anil
|b 5
700 1 _ |a Oliveira, Jorge
|b 6
700 1 _ |a Samuel, Robert
|b 7
700 1 _ |a Shelley, Leila E A
|b 8
700 1 _ |a Soria, Daniele
|b 9
700 1 _ |a Dwek, Miriam V
|b 10
700 1 _ |a Aguado-Barrera, Miguel E
|b 11
700 1 _ |a Azria, David
|b 12
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 13
|u dkfz
700 1 _ |a Dunning, Alison
|b 14
700 1 _ |a Giraldo, Alexandra
|b 15
700 1 _ |a Green, Sheryl
|b 16
700 1 _ |a Gutiérrez-Enríquez, Sara
|b 17
700 1 _ |a Herskind, Carsten
|b 18
700 1 _ |a van Hulle, Hans
|b 19
700 1 _ |a Lambrecht, Maarten
|b 20
700 1 _ |a Lozza, Laura
|b 21
700 1 _ |a Rancati, Tiziana
|b 22
700 1 _ |a Reyes, Victoria
|b 23
700 1 _ |a Rosenstein, Barry S
|b 24
700 1 _ |a de Ruysscher, Dirk
|b 25
700 1 _ |a de Santis, Maria C
|b 26
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 27
|u dkfz
700 1 _ |a Sperk, Elena
|b 28
700 1 _ |a Symonds, R Paul
|b 29
700 1 _ |a Stobart, Hilary
|b 30
700 1 _ |a Taboada-Valadares, Begoña
|b 31
700 1 _ |a Talbot, Christopher J
|b 32
700 1 _ |a Vakaet, Vincent J L
|b 33
700 1 _ |a Vega, Ana
|b 34
700 1 _ |a Veldeman, Liv
|b 35
700 1 _ |a Veldwijk, Marlon R
|b 36
700 1 _ |a Webb, Adam
|b 37
700 1 _ |a Weltens, Caroline
|b 38
700 1 _ |a West, Catharine M
|b 39
700 1 _ |a Chaussalet, Thierry J
|b 40
700 1 _ |a Rattay, Tim
|b 41
700 1 _ |a consortium, REQUITE
|b 42
|e Collaboration Author
773 _ _ |a 10.1016/j.adro.2021.100890
|g Vol. 7, no. 3, p. 100890 -
|0 PERI:(DE-600)2847724-8
|n 3
|p 100890
|t Advances in radiation oncology
|v 7
|y 2022
|x 2452-1094
909 C O |o oai:inrepo02.dkfz.de:180190
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)
|0 LIC:(DE-HGF)CCBYNCNDNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-26T13:09:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-26T13:09:20Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2021-01-26T13:09:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21