000180191 001__ 180191
000180191 005__ 20240229145609.0
000180191 0247_ $$2doi$$a10.1016/j.zemedi.2022.04.003
000180191 0247_ $$2pmid$$apmid:35643800
000180191 0247_ $$2ISSN$$a0040-5973
000180191 0247_ $$2ISSN$$a0939-3889
000180191 0247_ $$2ISSN$$a1876-4436
000180191 037__ $$aDKFZ-2022-01163
000180191 041__ $$aEnglish
000180191 082__ $$a610
000180191 1001_ $$aFailing, Thomas$$b0
000180191 245__ $$aEnhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles.
000180191 260__ $$aAmsterdam$$bElsevier, Urban & Fischer$$c2022
000180191 264_1 $$2Crossref$$3print$$bElsevier BV$$c2022-11-01
000180191 264_1 $$2Crossref$$3print$$bElsevier BV$$c2022-11-01
000180191 3367_ $$2DRIVER$$aarticle
000180191 3367_ $$2DataCite$$aOutput Types/Journal article
000180191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671633523_10741
000180191 3367_ $$2BibTeX$$aARTICLE
000180191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180191 3367_ $$00$$2EndNote$$aJournal Article
000180191 500__ $$a 2022 Nov;32(4):417-427
000180191 520__ $$aSimulation of absorbed dose deposition in a detector is one of the key tasks of Monte Carlo (MC) dosimetry methodology. Recent publications (Hartmann and Zink, 2018; Hartmann and Zink, 2019; Hartmann et al., 2021) have shown that knowledge of the charged particle fluence differential in energy contributing to absorbed dose is useful to provide enhanced insight on how response depends on detector properties. While some EGSnrc MC codes provide output of charged particle spectra, they are often restricted in setup options or limited in calculation efficiency. For detector simulations, a promising approach is to upgrade the EGSnrc code egs_chamber which so far does not offer charged particle calculations.Since the user code cavity offers charged particle fluence calculation, the underlying algorithm was embedded in egs_chamber. The modified code was tested against two EGSnrc applications and DOSXYZnrc which was modified accordingly by one of the authors. Furthermore, the gain in efficiency achieved by photon cross section enhancement was determined quantitatively.Electron and positron fluence spectra and restricted cema calculated by egs_chamber agreed well with the compared applications thus demonstrating the feasibility of the new code. Additionally, variance reduction techniques are now applicable also for fluence calculations. Depending on the simulation setup, considerable gains in efficiency were obtained by photon cross section enhancement.The enhanced egs_chamber code represents a valuable tool to investigate the response of detectors with respect to absorbed dose and fluence distribution and the perturbation caused by the detector in a reasonable computation time. By using intermediate phase space scoring, egs_chamber offers parallel calculation of charged particle fluence spectra for different detector configurations in one single run.
000180191 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000180191 542__ $$2Crossref$$i2022-11-01$$uhttps://www.elsevier.com/tdm/userlicense/1.0/
000180191 542__ $$2Crossref$$i2022-04-15$$uhttp://creativecommons.org/licenses/by/4.0/
000180191 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180191 650_7 $$2Other$$aCharged particle fluence
000180191 650_7 $$2Other$$aEGSnrc
000180191 650_7 $$2Other$$aMonte Carlo simulations
000180191 650_7 $$2Other$$aVariance reduction techniques
000180191 7001_ $$0P:(DE-He78)49d2503cabac0686951637454186171f$$aHartmann, Günther H$$b1$$udkfz
000180191 7001_ $$aHensley, Frank W$$b2
000180191 7001_ $$aKeil, Boris$$b3
000180191 7001_ $$aZink, Klemens$$b4
000180191 77318 $$2Crossref$$3journal-article$$a10.1016/j.zemedi.2022.04.003$$bElsevier BV$$d2022-11-01$$n4$$p417-427$$tZeitschrift für Medizinische Physik$$v32$$x0939-3889$$y2022
000180191 773__ $$0PERI:(DE-600)2231492-1$$a10.1016/j.zemedi.2022.04.003$$gp. S0939388922000587$$n4$$p417-427$$tZeitschrift für medizinische Physik$$v32$$x0939-3889$$y2022
000180191 909CO $$ooai:inrepo02.dkfz.de:180191$$pVDB
000180191 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)49d2503cabac0686951637454186171f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000180191 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000180191 9141_ $$y2022
000180191 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ MED PHYS : 2021$$d2022-11-13
000180191 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-13
000180191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-13
000180191 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-13
000180191 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-13
000180191 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bZ MED PHYS : 2021$$d2022-11-13
000180191 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000180191 980__ $$ajournal
000180191 980__ $$aVDB
000180191 980__ $$aI:(DE-He78)E040-20160331
000180191 980__ $$aUNRESTRICTED
000180191 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.13081$$p4246 -$$tMed. Phys.$$v45$$y2018
000180191 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.13721$$p5159 -$$tMed. Phys.$$v46$$y2019
000180191 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.15266$$p7461 -$$tMed. Phys.$$v48$$y2021
000180191 999C5 $$2Crossref$$uP. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V.G. Smith, S. Vynckier, Technical Report Series No. 398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, Vienna.
000180191 999C5 $$2Crossref$$uIAEA, Comprehensive Audits of Radiotherapy Practices: A Tool for Quality Improvement, International Atomic Energy Agency, Vienna, 2007.
000180191 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1186/s13014-018-1065-3$$uP. Andreo, Monte Carlo simulations in radiotherapy dosimetry, Radiat. Oncol., 13 (1). https://doi.org/10.1186/s13014-018-1065-3.
000180191 999C5 $$1McEwen$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.4866223$$p041501 -$$tMed. Phys.$$v41$$y2014
000180191 999C5 $$1DIN-Normenausschuss Radiologie (NAR)$$2Crossref$$oDIN-Normenausschuss Radiologie (NAR) 2020$$y2020
000180191 999C5 $$1Andreo$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/ab807b$$p095011 -$$tPhys. Med. Biol.$$v65$$y2020
000180191 999C5 $$1Wulff$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.2874554$$p1328 -$$tMed. Phys.$$v35$$y2008
000180191 999C5 $$1Kawrakow$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/45/8/308$$p2163 -$$tPhys. Med. Biol.$$v45$$y2000
000180191 999C5 $$2Crossref$$uD.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, E. Mainegra-Hing, NRC user codes for EGSnrc, Techreport PIRS-702, National Research Council Canada (2011 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs702-egsnrc-codes.pdf.
000180191 999C5 $$1Benmakhlouf$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.12042$$p713 -$$tMed. Phys.$$v44$$y2017
000180191 999C5 $$1Andreo$$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6560/aa562e$$p1518 -$$tPhys. Med. Biol.$$v62$$y2017
000180191 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.zemedi.2018.08.003$$p239 -$$tZeitschrift für Medizinische Physik$$v29$$y2019
000180191 999C5 $$1Hartmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.zemedi.2019.05.001$$p24 -$$tZeitschrift für Medizinische Physik$$v30$$y2020
000180191 999C5 $$1Kellerer$$2Crossref$$9-- missing cx lookup --$$a10.2307/3573243$$p359 -$$tRadiat. Res.$$v47$$y1971
000180191 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/jicru/ndw043$$uICRU, Report 90, J. Int. Commiss. Radiat. Units Meas. 14 (1). https://doi.org/10.1093/jicru/ndw043.
000180191 999C5 $$1Nahum$$2Crossref$$9-- missing cx lookup --$$a10.1088/0031-9155/23/1/002$$p24 -$$tPhys. Med. Biol.$$v23$$y1978
000180191 999C5 $$1Kellerer$$2Crossref$$9-- missing cx lookup --$$a10.2307/3578474$$p15 -$$tRadiat. Res.$$v130$$y1992
000180191 999C5 $$1Kawrakow$$2Crossref$$oKawrakow 2019$$y2019
000180191 999C5 $$1Walters$$2Crossref$$oWalters 2021$$y2021
000180191 999C5 $$1Andreo$$2Crossref$$oAndreo 2017$$y2017
000180191 999C5 $$1Walters$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.1517611$$p2745 -$$tMed. Phys.$$v29$$y2002
000180191 999C5 $$1Mohan$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.595680$$p592 -$$tMed. Phys.$$v12$$y1985
000180191 999C5 $$1Mora$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.598770$$p2494 -$$tMed. Phys.$$v26$$y1999
000180191 999C5 $$1Sechopoulos$$2Crossref$$9-- missing cx lookup --$$a10.1002/mp.12702$$pe1 -$$tMed. Phys.$$v45$$y2017
000180191 999C5 $$2Crossref$$uKawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., Tessier, F., Walters, B.R.B. The EGSnrc code system: Monte Carlo simulation of electron and photon transport; Report PIRS-701, Techreport PIRS-701, National Research Council Canada (2001–2015 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf.
000180191 999C5 $$1Kawrakow$$2Crossref$$9-- missing cx lookup --$$a10.1118/1.598917$$p485 -$$tMed. Phys.$$v27$$y2000
000180191 999C5 $$1Seltzer$$2Crossref$$oSeltzer 1993$$y1993
000180191 999C5 $$1Chandrasekaran$$2Crossref$$9-- missing cx lookup --$$a10.4103/jmp.JMP_132_17$$p185 -$$tJ. Med. Phys.$$v43$$y2018