Home > Publications database > Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. > print |
001 | 180191 | ||
005 | 20240229145609.0 | ||
024 | 7 | _ | |a 10.1016/j.zemedi.2022.04.003 |2 doi |
024 | 7 | _ | |a pmid:35643800 |2 pmid |
024 | 7 | _ | |a 0040-5973 |2 ISSN |
024 | 7 | _ | |a 0939-3889 |2 ISSN |
024 | 7 | _ | |a 1876-4436 |2 ISSN |
037 | _ | _ | |a DKFZ-2022-01163 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Failing, Thomas |b 0 |
245 | _ | _ | |a Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles. |
260 | _ | _ | |a Amsterdam |c 2022 |b Elsevier, Urban & Fischer |
264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-11-01 |
264 | _ | 1 | |3 print |2 Crossref |b Elsevier BV |c 2022-11-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1671633523_10741 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2022 Nov;32(4):417-427 |
520 | _ | _ | |a Simulation of absorbed dose deposition in a detector is one of the key tasks of Monte Carlo (MC) dosimetry methodology. Recent publications (Hartmann and Zink, 2018; Hartmann and Zink, 2019; Hartmann et al., 2021) have shown that knowledge of the charged particle fluence differential in energy contributing to absorbed dose is useful to provide enhanced insight on how response depends on detector properties. While some EGSnrc MC codes provide output of charged particle spectra, they are often restricted in setup options or limited in calculation efficiency. For detector simulations, a promising approach is to upgrade the EGSnrc code egs_chamber which so far does not offer charged particle calculations.Since the user code cavity offers charged particle fluence calculation, the underlying algorithm was embedded in egs_chamber. The modified code was tested against two EGSnrc applications and DOSXYZnrc which was modified accordingly by one of the authors. Furthermore, the gain in efficiency achieved by photon cross section enhancement was determined quantitatively.Electron and positron fluence spectra and restricted cema calculated by egs_chamber agreed well with the compared applications thus demonstrating the feasibility of the new code. Additionally, variance reduction techniques are now applicable also for fluence calculations. Depending on the simulation setup, considerable gains in efficiency were obtained by photon cross section enhancement.The enhanced egs_chamber code represents a valuable tool to investigate the response of detectors with respect to absorbed dose and fluence distribution and the perturbation caused by the detector in a reasonable computation time. By using intermediate phase space scoring, egs_chamber offers parallel calculation of charged particle fluence spectra for different detector configurations in one single run. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
542 | _ | _ | |i 2022-11-01 |2 Crossref |u https://www.elsevier.com/tdm/userlicense/1.0/ |
542 | _ | _ | |i 2022-04-15 |2 Crossref |u http://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Charged particle fluence |2 Other |
650 | _ | 7 | |a EGSnrc |2 Other |
650 | _ | 7 | |a Monte Carlo simulations |2 Other |
650 | _ | 7 | |a Variance reduction techniques |2 Other |
700 | 1 | _ | |a Hartmann, Günther H |0 P:(DE-He78)49d2503cabac0686951637454186171f |b 1 |u dkfz |
700 | 1 | _ | |a Hensley, Frank W |b 2 |
700 | 1 | _ | |a Keil, Boris |b 3 |
700 | 1 | _ | |a Zink, Klemens |b 4 |
773 | 1 | 8 | |a 10.1016/j.zemedi.2022.04.003 |b Elsevier BV |d 2022-11-01 |n 4 |p 417-427 |3 journal-article |2 Crossref |t Zeitschrift für Medizinische Physik |v 32 |y 2022 |x 0939-3889 |
773 | _ | _ | |a 10.1016/j.zemedi.2022.04.003 |g p. S0939388922000587 |0 PERI:(DE-600)2231492-1 |n 4 |p 417-427 |t Zeitschrift für medizinische Physik |v 32 |y 2022 |x 0939-3889 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:180191 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)49d2503cabac0686951637454186171f |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b Z MED PHYS : 2021 |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-13 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-13 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b Z MED PHYS : 2021 |d 2022-11-13 |
920 | 1 | _ | |0 I:(DE-He78)E040-20160331 |k E040 |l E040 Med. Physik in der Strahlentherapie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E040-20160331 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1002/mp.13081 |9 -- missing cx lookup -- |1 Hartmann |p 4246 - |2 Crossref |t Med. Phys. |v 45 |y 2018 |
999 | C | 5 | |a 10.1002/mp.13721 |9 -- missing cx lookup -- |1 Hartmann |p 5159 - |2 Crossref |t Med. Phys. |v 46 |y 2019 |
999 | C | 5 | |a 10.1002/mp.15266 |9 -- missing cx lookup -- |1 Hartmann |p 7461 - |2 Crossref |t Med. Phys. |v 48 |y 2021 |
999 | C | 5 | |2 Crossref |u P. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V.G. Smith, S. Vynckier, Technical Report Series No. 398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, Vienna. |
999 | C | 5 | |2 Crossref |u IAEA, Comprehensive Audits of Radiotherapy Practices: A Tool for Quality Improvement, International Atomic Energy Agency, Vienna, 2007. |
999 | C | 5 | |a 10.1186/s13014-018-1065-3 |9 -- missing cx lookup -- |2 Crossref |u P. Andreo, Monte Carlo simulations in radiotherapy dosimetry, Radiat. Oncol., 13 (1). https://doi.org/10.1186/s13014-018-1065-3. |
999 | C | 5 | |a 10.1118/1.4866223 |9 -- missing cx lookup -- |1 McEwen |p 041501 - |2 Crossref |t Med. Phys. |v 41 |y 2014 |
999 | C | 5 | |1 DIN-Normenausschuss Radiologie (NAR) |y 2020 |2 Crossref |o DIN-Normenausschuss Radiologie (NAR) 2020 |
999 | C | 5 | |a 10.1088/1361-6560/ab807b |9 -- missing cx lookup -- |1 Andreo |p 095011 - |2 Crossref |t Phys. Med. Biol. |v 65 |y 2020 |
999 | C | 5 | |a 10.1118/1.2874554 |9 -- missing cx lookup -- |1 Wulff |p 1328 - |2 Crossref |t Med. Phys. |v 35 |y 2008 |
999 | C | 5 | |a 10.1088/0031-9155/45/8/308 |9 -- missing cx lookup -- |1 Kawrakow |p 2163 - |2 Crossref |t Phys. Med. Biol. |v 45 |y 2000 |
999 | C | 5 | |2 Crossref |u D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, E. Mainegra-Hing, NRC user codes for EGSnrc, Techreport PIRS-702, National Research Council Canada (2011 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs702-egsnrc-codes.pdf. |
999 | C | 5 | |a 10.1002/mp.12042 |9 -- missing cx lookup -- |1 Benmakhlouf |p 713 - |2 Crossref |t Med. Phys. |v 44 |y 2017 |
999 | C | 5 | |a 10.1088/1361-6560/aa562e |9 -- missing cx lookup -- |1 Andreo |p 1518 - |2 Crossref |t Phys. Med. Biol. |v 62 |y 2017 |
999 | C | 5 | |a 10.1016/j.zemedi.2018.08.003 |9 -- missing cx lookup -- |1 Hartmann |p 239 - |2 Crossref |t Zeitschrift für Medizinische Physik |v 29 |y 2019 |
999 | C | 5 | |a 10.1016/j.zemedi.2019.05.001 |9 -- missing cx lookup -- |1 Hartmann |p 24 - |2 Crossref |t Zeitschrift für Medizinische Physik |v 30 |y 2020 |
999 | C | 5 | |a 10.2307/3573243 |9 -- missing cx lookup -- |1 Kellerer |p 359 - |2 Crossref |t Radiat. Res. |v 47 |y 1971 |
999 | C | 5 | |a 10.1093/jicru/ndw043 |9 -- missing cx lookup -- |2 Crossref |u ICRU, Report 90, J. Int. Commiss. Radiat. Units Meas. 14 (1). https://doi.org/10.1093/jicru/ndw043. |
999 | C | 5 | |a 10.1088/0031-9155/23/1/002 |9 -- missing cx lookup -- |1 Nahum |p 24 - |2 Crossref |t Phys. Med. Biol. |v 23 |y 1978 |
999 | C | 5 | |a 10.2307/3578474 |9 -- missing cx lookup -- |1 Kellerer |p 15 - |2 Crossref |t Radiat. Res. |v 130 |y 1992 |
999 | C | 5 | |1 Kawrakow |y 2019 |2 Crossref |o Kawrakow 2019 |
999 | C | 5 | |1 Walters |y 2021 |2 Crossref |o Walters 2021 |
999 | C | 5 | |1 Andreo |y 2017 |2 Crossref |o Andreo 2017 |
999 | C | 5 | |a 10.1118/1.1517611 |9 -- missing cx lookup -- |1 Walters |p 2745 - |2 Crossref |t Med. Phys. |v 29 |y 2002 |
999 | C | 5 | |a 10.1118/1.595680 |9 -- missing cx lookup -- |1 Mohan |p 592 - |2 Crossref |t Med. Phys. |v 12 |y 1985 |
999 | C | 5 | |a 10.1118/1.598770 |9 -- missing cx lookup -- |1 Mora |p 2494 - |2 Crossref |t Med. Phys. |v 26 |y 1999 |
999 | C | 5 | |a 10.1002/mp.12702 |9 -- missing cx lookup -- |1 Sechopoulos |p e1 - |2 Crossref |t Med. Phys. |v 45 |y 2017 |
999 | C | 5 | |2 Crossref |u Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., Tessier, F., Walters, B.R.B. The EGSnrc code system: Monte Carlo simulation of electron and photon transport; Report PIRS-701, Techreport PIRS-701, National Research Council Canada (2001–2015 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf. |
999 | C | 5 | |a 10.1118/1.598917 |9 -- missing cx lookup -- |1 Kawrakow |p 485 - |2 Crossref |t Med. Phys. |v 27 |y 2000 |
999 | C | 5 | |1 Seltzer |y 1993 |2 Crossref |o Seltzer 1993 |
999 | C | 5 | |a 10.4103/jmp.JMP_132_17 |9 -- missing cx lookup -- |1 Chandrasekaran |p 185 - |2 Crossref |t J. Med. Phys. |v 43 |y 2018 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|