001     180191
005     20240229145609.0
024 7 _ |a 10.1016/j.zemedi.2022.04.003
|2 doi
024 7 _ |a pmid:35643800
|2 pmid
024 7 _ |a 0040-5973
|2 ISSN
024 7 _ |a 0939-3889
|2 ISSN
024 7 _ |a 1876-4436
|2 ISSN
037 _ _ |a DKFZ-2022-01163
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Failing, Thomas
|b 0
245 _ _ |a Enhancement of the EGSnrc code egs_chamber for fast fluence calculations of charged particles.
260 _ _ |a Amsterdam
|c 2022
|b Elsevier, Urban & Fischer
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2022-11-01
264 _ 1 |3 print
|2 Crossref
|b Elsevier BV
|c 2022-11-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1671633523_10741
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Nov;32(4):417-427
520 _ _ |a Simulation of absorbed dose deposition in a detector is one of the key tasks of Monte Carlo (MC) dosimetry methodology. Recent publications (Hartmann and Zink, 2018; Hartmann and Zink, 2019; Hartmann et al., 2021) have shown that knowledge of the charged particle fluence differential in energy contributing to absorbed dose is useful to provide enhanced insight on how response depends on detector properties. While some EGSnrc MC codes provide output of charged particle spectra, they are often restricted in setup options or limited in calculation efficiency. For detector simulations, a promising approach is to upgrade the EGSnrc code egs_chamber which so far does not offer charged particle calculations.Since the user code cavity offers charged particle fluence calculation, the underlying algorithm was embedded in egs_chamber. The modified code was tested against two EGSnrc applications and DOSXYZnrc which was modified accordingly by one of the authors. Furthermore, the gain in efficiency achieved by photon cross section enhancement was determined quantitatively.Electron and positron fluence spectra and restricted cema calculated by egs_chamber agreed well with the compared applications thus demonstrating the feasibility of the new code. Additionally, variance reduction techniques are now applicable also for fluence calculations. Depending on the simulation setup, considerable gains in efficiency were obtained by photon cross section enhancement.The enhanced egs_chamber code represents a valuable tool to investigate the response of detectors with respect to absorbed dose and fluence distribution and the perturbation caused by the detector in a reasonable computation time. By using intermediate phase space scoring, egs_chamber offers parallel calculation of charged particle fluence spectra for different detector configurations in one single run.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
542 _ _ |i 2022-11-01
|2 Crossref
|u https://www.elsevier.com/tdm/userlicense/1.0/
542 _ _ |i 2022-04-15
|2 Crossref
|u http://creativecommons.org/licenses/by/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Charged particle fluence
|2 Other
650 _ 7 |a EGSnrc
|2 Other
650 _ 7 |a Monte Carlo simulations
|2 Other
650 _ 7 |a Variance reduction techniques
|2 Other
700 1 _ |a Hartmann, Günther H
|0 P:(DE-He78)49d2503cabac0686951637454186171f
|b 1
|u dkfz
700 1 _ |a Hensley, Frank W
|b 2
700 1 _ |a Keil, Boris
|b 3
700 1 _ |a Zink, Klemens
|b 4
773 1 8 |a 10.1016/j.zemedi.2022.04.003
|b Elsevier BV
|d 2022-11-01
|n 4
|p 417-427
|3 journal-article
|2 Crossref
|t Zeitschrift für Medizinische Physik
|v 32
|y 2022
|x 0939-3889
773 _ _ |a 10.1016/j.zemedi.2022.04.003
|g p. S0939388922000587
|0 PERI:(DE-600)2231492-1
|n 4
|p 417-427
|t Zeitschrift für medizinische Physik
|v 32
|y 2022
|x 0939-3889
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180191
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)49d2503cabac0686951637454186171f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z MED PHYS : 2021
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b Z MED PHYS : 2021
|d 2022-11-13
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1002/mp.13081
|9 -- missing cx lookup --
|1 Hartmann
|p 4246 -
|2 Crossref
|t Med. Phys.
|v 45
|y 2018
999 C 5 |a 10.1002/mp.13721
|9 -- missing cx lookup --
|1 Hartmann
|p 5159 -
|2 Crossref
|t Med. Phys.
|v 46
|y 2019
999 C 5 |a 10.1002/mp.15266
|9 -- missing cx lookup --
|1 Hartmann
|p 7461 -
|2 Crossref
|t Med. Phys.
|v 48
|y 2021
999 C 5 |2 Crossref
|u P. Andreo, D.T. Burns, K. Hohlfeld, M.S. Huq, T. Kanai, F. Laitano, V.G. Smith, S. Vynckier, Technical Report Series No. 398 Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water, International Atomic Energy Agency, Vienna.
999 C 5 |2 Crossref
|u IAEA, Comprehensive Audits of Radiotherapy Practices: A Tool for Quality Improvement, International Atomic Energy Agency, Vienna, 2007.
999 C 5 |a 10.1186/s13014-018-1065-3
|9 -- missing cx lookup --
|2 Crossref
|u P. Andreo, Monte Carlo simulations in radiotherapy dosimetry, Radiat. Oncol., 13 (1). https://doi.org/10.1186/s13014-018-1065-3.
999 C 5 |a 10.1118/1.4866223
|9 -- missing cx lookup --
|1 McEwen
|p 041501 -
|2 Crossref
|t Med. Phys.
|v 41
|y 2014
999 C 5 |1 DIN-Normenausschuss Radiologie (NAR)
|y 2020
|2 Crossref
|o DIN-Normenausschuss Radiologie (NAR) 2020
999 C 5 |a 10.1088/1361-6560/ab807b
|9 -- missing cx lookup --
|1 Andreo
|p 095011 -
|2 Crossref
|t Phys. Med. Biol.
|v 65
|y 2020
999 C 5 |a 10.1118/1.2874554
|9 -- missing cx lookup --
|1 Wulff
|p 1328 -
|2 Crossref
|t Med. Phys.
|v 35
|y 2008
999 C 5 |a 10.1088/0031-9155/45/8/308
|9 -- missing cx lookup --
|1 Kawrakow
|p 2163 -
|2 Crossref
|t Phys. Med. Biol.
|v 45
|y 2000
999 C 5 |2 Crossref
|u D.W.O. Rogers, I. Kawrakow, J.P. Seuntjens, B.R.B. Walters, E. Mainegra-Hing, NRC user codes for EGSnrc, Techreport PIRS-702, National Research Council Canada (2011 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs702-egsnrc-codes.pdf.
999 C 5 |a 10.1002/mp.12042
|9 -- missing cx lookup --
|1 Benmakhlouf
|p 713 -
|2 Crossref
|t Med. Phys.
|v 44
|y 2017
999 C 5 |a 10.1088/1361-6560/aa562e
|9 -- missing cx lookup --
|1 Andreo
|p 1518 -
|2 Crossref
|t Phys. Med. Biol.
|v 62
|y 2017
999 C 5 |a 10.1016/j.zemedi.2018.08.003
|9 -- missing cx lookup --
|1 Hartmann
|p 239 -
|2 Crossref
|t Zeitschrift für Medizinische Physik
|v 29
|y 2019
999 C 5 |a 10.1016/j.zemedi.2019.05.001
|9 -- missing cx lookup --
|1 Hartmann
|p 24 -
|2 Crossref
|t Zeitschrift für Medizinische Physik
|v 30
|y 2020
999 C 5 |a 10.2307/3573243
|9 -- missing cx lookup --
|1 Kellerer
|p 359 -
|2 Crossref
|t Radiat. Res.
|v 47
|y 1971
999 C 5 |a 10.1093/jicru/ndw043
|9 -- missing cx lookup --
|2 Crossref
|u ICRU, Report 90, J. Int. Commiss. Radiat. Units Meas. 14 (1). https://doi.org/10.1093/jicru/ndw043.
999 C 5 |a 10.1088/0031-9155/23/1/002
|9 -- missing cx lookup --
|1 Nahum
|p 24 -
|2 Crossref
|t Phys. Med. Biol.
|v 23
|y 1978
999 C 5 |a 10.2307/3578474
|9 -- missing cx lookup --
|1 Kellerer
|p 15 -
|2 Crossref
|t Radiat. Res.
|v 130
|y 1992
999 C 5 |1 Kawrakow
|y 2019
|2 Crossref
|o Kawrakow 2019
999 C 5 |1 Walters
|y 2021
|2 Crossref
|o Walters 2021
999 C 5 |1 Andreo
|y 2017
|2 Crossref
|o Andreo 2017
999 C 5 |a 10.1118/1.1517611
|9 -- missing cx lookup --
|1 Walters
|p 2745 -
|2 Crossref
|t Med. Phys.
|v 29
|y 2002
999 C 5 |a 10.1118/1.595680
|9 -- missing cx lookup --
|1 Mohan
|p 592 -
|2 Crossref
|t Med. Phys.
|v 12
|y 1985
999 C 5 |a 10.1118/1.598770
|9 -- missing cx lookup --
|1 Mora
|p 2494 -
|2 Crossref
|t Med. Phys.
|v 26
|y 1999
999 C 5 |a 10.1002/mp.12702
|9 -- missing cx lookup --
|1 Sechopoulos
|p e1 -
|2 Crossref
|t Med. Phys.
|v 45
|y 2017
999 C 5 |2 Crossref
|u Kawrakow, I., Mainegra-Hing, E., Rogers, D.W.O., Tessier, F., Walters, B.R.B. The EGSnrc code system: Monte Carlo simulation of electron and photon transport; Report PIRS-701, Techreport PIRS-701, National Research Council Canada (2001–2015 [version 2021]). https://nrc-cnrc.github.io/EGSnrc/doc/pirs701-egsnrc.pdf.
999 C 5 |a 10.1118/1.598917
|9 -- missing cx lookup --
|1 Kawrakow
|p 485 -
|2 Crossref
|t Med. Phys.
|v 27
|y 2000
999 C 5 |1 Seltzer
|y 1993
|2 Crossref
|o Seltzer 1993
999 C 5 |a 10.4103/jmp.JMP_132_17
|9 -- missing cx lookup --
|1 Chandrasekaran
|p 185 -
|2 Crossref
|t J. Med. Phys.
|v 43
|y 2018


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21