001     180319
005     20240229145614.0
024 7 _ |a 10.1016/j.cmet.2022.04.009
|2 doi
024 7 _ |a pmid:35561674
|2 pmid
024 7 _ |a pmc:PMC9097013
|2 pmc
024 7 _ |a 1550-4131
|2 ISSN
024 7 _ |a 1932-7420
|2 ISSN
024 7 _ |a altmetric:128149552
|2 altmetric
037 _ _ |a DKFZ-2022-01246
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Garreta, Elena
|b 0
245 _ _ |a A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells.
260 _ _ |a Cambridge, Mass.
|c 2022
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1655117697_17609
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a ACE2
|2 Other
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a SARS-CoV-2
|2 Other
650 _ 7 |a angiotensin-converting enzyme 2
|2 Other
650 _ 7 |a diabetes 2
|2 Other
650 _ 7 |a human kidney organoids
|2 Other
650 _ 7 |a Peptidyl-Dipeptidase A
|0 EC 3.4.15.1
|2 NLM Chemicals
650 _ 7 |a Angiotensin-Converting Enzyme 2
|0 EC 3.4.17.23
|2 NLM Chemicals
650 _ 2 |a Angiotensin-Converting Enzyme 2
|2 MeSH
650 _ 2 |a COVID-19
|2 MeSH
650 _ 2 |a Diabetes Mellitus
|2 MeSH
650 _ 2 |a Diabetic Nephropathies
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Kidney: metabolism
|2 MeSH
650 _ 2 |a Organoids
|2 MeSH
650 _ 2 |a Peptidyl-Dipeptidase A: genetics
|2 MeSH
650 _ 2 |a Peptidyl-Dipeptidase A: metabolism
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
700 1 _ |a Prado, Patricia
|b 1
700 1 _ |a Stanifer, Megan L
|0 P:(DE-He78)8c3dd76230733f354d346a2fbe8db355
|b 2
|u dkfz
700 1 _ |a Monteil, Vanessa
|b 3
700 1 _ |a Marco, Andrés
|b 4
700 1 _ |a Ullate-Agote, Asier
|b 5
700 1 _ |a Moya-Rull, Daniel
|b 6
700 1 _ |a Vilas-Zornoza, Amaia
|b 7
700 1 _ |a Tarantino, Carolina
|b 8
700 1 _ |a Romero, Juan Pablo
|b 9
700 1 _ |a Jonsson, Gustav
|b 10
700 1 _ |a Oria, Roger
|b 11
700 1 _ |a Leopoldi, Alexandra
|b 12
700 1 _ |a Hagelkruys, Astrid
|b 13
700 1 _ |a Gallo, Maria
|b 14
700 1 _ |a González, Federico
|b 15
700 1 _ |a Domingo-Pedrol, Pere
|b 16
700 1 _ |a Gavaldà, Aleix
|b 17
700 1 _ |a Del Pozo, Carmen Hurtado
|b 18
700 1 _ |a Hasan Ali, Omar
|b 19
700 1 _ |a Ventura-Aguiar, Pedro
|b 20
700 1 _ |a Campistol, Josep María
|b 21
700 1 _ |a Prosper, Felipe
|b 22
700 1 _ |a Mirazimi, Ali
|b 23
700 1 _ |a Boulant, Steeve
|0 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
|b 24
|u dkfz
700 1 _ |a Penninger, Josef M
|b 25
700 1 _ |a Montserrat, Nuria
|b 26
773 _ _ |a 10.1016/j.cmet.2022.04.009
|g Vol. 34, no. 6, p. 857 - 873.e9
|0 PERI:(DE-600)2174469-5
|n 6
|p 857 - 873.e9
|t Cell metabolism
|v 34
|y 2022
|x 1550-4131
909 C O |o oai:inrepo02.dkfz.de:180319
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)8c3dd76230733f354d346a2fbe8db355
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-22
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b CELL METAB : 2021
|d 2022-11-22
920 1 _ |0 I:(DE-He78)F140-20160331
|k F140
|l F140 Zelluläre Polarität und virale Infektion
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F140-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21