000180371 001__ 180371
000180371 005__ 20240229145616.0
000180371 0247_ $$2doi$$a10.1038/s41467-022-31131-8
000180371 0247_ $$2pmid$$apmid:35715410
000180371 0247_ $$2altmetric$$aaltmetric:129819411
000180371 037__ $$aDKFZ-2022-01285
000180371 041__ $$aEnglish
000180371 082__ $$a500
000180371 1001_ $$aJaber, Mohammad$$b0
000180371 245__ $$aComparative parallel multi-omics analysis during the induction of pluripotent and trophectoderm states.
000180371 260__ $$a[London]$$bNature Publishing Group UK$$c2022
000180371 3367_ $$2DRIVER$$aarticle
000180371 3367_ $$2DataCite$$aOutput Types/Journal article
000180371 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655724606_1692
000180371 3367_ $$2BibTeX$$aARTICLE
000180371 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180371 3367_ $$00$$2EndNote$$aJournal Article
000180371 520__ $$aFollowing fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.
000180371 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000180371 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180371 7001_ $$aRadwan, Ahmed$$b1
000180371 7001_ $$00000-0002-2537-3132$$aLoyfer, Netanel$$b2
000180371 7001_ $$aAbdeen, Mufeed$$b3
000180371 7001_ $$aSebban, Shulamit$$b4
000180371 7001_ $$aKhatib, Areej$$b5
000180371 7001_ $$aYassen, Hazar$$b6
000180371 7001_ $$0P:(DE-He78)ff4b82323a90d759d3c7eef0fd8ddfe3$$aKolb, Thorsten$$b7$$udkfz
000180371 7001_ $$0P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aZapatka, Marc$$b8$$udkfz
000180371 7001_ $$aMakedonski, Kirill$$b9
000180371 7001_ $$0P:(DE-He78)509fb81813c1911954da583129e8ea57$$aErnst, Aurélie$$b10$$udkfz
000180371 7001_ $$00000-0002-1892-5461$$aKaplan, Tommy$$b11
000180371 7001_ $$00000-0002-7970-5163$$aBuganim, Yosef$$b12
000180371 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-31131-8$$gVol. 13, no. 1, p. 3475$$n1$$p3475$$tNature Communications$$v13$$x2041-1723$$y2022
000180371 909CO $$ooai:inrepo02.dkfz.de:180371$$pVDB
000180371 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ff4b82323a90d759d3c7eef0fd8ddfe3$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000180371 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1beba8f953e7ae7e96e8d3e9a48f10f7$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000180371 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)509fb81813c1911954da583129e8ea57$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000180371 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000180371 9141_ $$y2022
000180371 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000180371 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z
000180371 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z
000180371 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z
000180371 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000180371 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11
000180371 9201_ $$0I:(DE-He78)B420-20160331$$kB420$$lGenominstabilität in Tumoren$$x0
000180371 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000180371 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x2
000180371 980__ $$ajournal
000180371 980__ $$aVDB
000180371 980__ $$aI:(DE-He78)B420-20160331
000180371 980__ $$aI:(DE-He78)HD01-20160331
000180371 980__ $$aI:(DE-He78)B060-20160331
000180371 980__ $$aUNRESTRICTED