000180487 001__ 180487
000180487 005__ 20240229145620.0
000180487 0247_ $$2doi$$a10.1186/s41181-022-00167-y
000180487 0247_ $$2pmid$$apmid:35751707
000180487 037__ $$aDKFZ-2022-01366
000180487 041__ $$aEnglish
000180487 082__ $$a610
000180487 1001_ $$0P:(DE-He78)35d17d863048f286ee0c253b7b76b907$$aKramer, Carsten Sven$$b0$$eFirst author
000180487 245__ $$aFluorination of silyl prosthetic groups by fluorine mediated silyl ether linker cleavage: a concept study with conditions applicable in radiofluorination.
000180487 260__ $$a[Heidelberg]$$bSpringerOpen$$c2022
000180487 3367_ $$2DRIVER$$aarticle
000180487 3367_ $$2DataCite$$aOutput Types/Journal article
000180487 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678784308_8940
000180487 3367_ $$2BibTeX$$aARTICLE
000180487 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180487 3367_ $$00$$2EndNote$$aJournal Article
000180487 500__ $$a#EA:E030#LA:E030#
000180487 520__ $$aPositron emission tomography (PET) is a powerful tool in medical imaging, especially in combination with the PET radionuclide fluorine-18 that possesses optimal characteristics. For labelling of biomolecules and low-molecular weight tracers, fluorine-18 can be covalently bound to silicon by either nucleophilic replacements of leaving groups (like ethers) or by isotope exchange of fluorine-19. While nucleophilic substitutions require additional purification steps for the removal of contaminants, isotope exchange with fluorine-18 results in low molar activity. Both challenges can be addressed with a detagging-fluorination of an immobilized silyl ether motif.By overcoming the susceptibility towards hydrolysis, optimized detagging conditions (improved reaction time, fluorination reagent, linker, and resin) could afford the highly sterically hindered silyl fluoride motifs, that are commonly applied in radiochemistry in small and semipreparative scales. The described reaction conditions with fluorine-19 are transferrable to conditions with [18F]fluoride and silyl fluorides were obtained after approx. 10 min reaction time and in high-purity after mechanical filtration.We present a proof-of-concept study for a detagging-fluorination of two silyl ethers that are bound to an optimized amino alcohol resin. We show with our model substrate that our solid-phase linker combination is capable of yielding the desired silicon fluoride in amounts sufficient for biological studies in animals or humans under standard fluorination conditions that may also be transferred to a radiolabelling setting. In conclusion, our presented approach could optimize the molar activity and simplify the preparation of radiofluorinated silyl fluorides.
000180487 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000180487 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180487 650_7 $$2Other$$aDetagging
000180487 650_7 $$2Other$$aFluorine-18
000180487 650_7 $$2Other$$aPET
000180487 650_7 $$2Other$$aRadiofluorination
000180487 650_7 $$2Other$$aSiFA
000180487 650_7 $$2Other$$aSilyl fluorides
000180487 650_7 $$2Other$$aSolid phase synthesis
000180487 650_7 $$2Other$$aSolid support
000180487 7001_ $$0P:(DE-HGF)0$$aGreiner, Luca$$b1
000180487 7001_ $$aKopka, Klaus$$b2
000180487 7001_ $$0P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aSchäfer, Martin$$b3$$eLast author$$udkfz
000180487 773__ $$0PERI:(DE-600)2843088-8$$a10.1186/s41181-022-00167-y$$gVol. 7, no. 1, p. 15$$n1$$p15$$tEJNMMI radiopharmacy and chemistry$$v7$$x2365-421X$$y2022
000180487 909CO $$ooai:inrepo02.dkfz.de:180487$$pVDB
000180487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)35d17d863048f286ee0c253b7b76b907$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000180487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000180487 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000180487 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000180487 9141_ $$y2022
000180487 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-12
000180487 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000180487 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000180487 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-14T16:19:01Z
000180487 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-14T16:19:01Z
000180487 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-14T16:19:01Z
000180487 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2022-11-22
000180487 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000180487 9202_ $$0I:(DE-He78)E030-20160331$$kE030$$lRadiopharmazeutische Chemie$$x0
000180487 9201_ $$0I:(DE-He78)E030-20160331$$kE030$$lRadiopharmazeutische Chemie$$x0
000180487 9200_ $$0I:(DE-He78)E030-20160331$$kE030$$lRadiopharmazeutische Chemie$$x0
000180487 980__ $$ajournal
000180487 980__ $$aVDB
000180487 980__ $$aI:(DE-He78)E030-20160331
000180487 980__ $$aUNRESTRICTED