001     180487
005     20240229145620.0
024 7 _ |a 10.1186/s41181-022-00167-y
|2 doi
024 7 _ |a pmid:35751707
|2 pmid
037 _ _ |a DKFZ-2022-01366
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kramer, Carsten Sven
|0 P:(DE-He78)35d17d863048f286ee0c253b7b76b907
|b 0
|e First author
245 _ _ |a Fluorination of silyl prosthetic groups by fluorine mediated silyl ether linker cleavage: a concept study with conditions applicable in radiofluorination.
260 _ _ |a [Heidelberg]
|c 2022
|b SpringerOpen
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678784308_8940
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E030#LA:E030#
520 _ _ |a Positron emission tomography (PET) is a powerful tool in medical imaging, especially in combination with the PET radionuclide fluorine-18 that possesses optimal characteristics. For labelling of biomolecules and low-molecular weight tracers, fluorine-18 can be covalently bound to silicon by either nucleophilic replacements of leaving groups (like ethers) or by isotope exchange of fluorine-19. While nucleophilic substitutions require additional purification steps for the removal of contaminants, isotope exchange with fluorine-18 results in low molar activity. Both challenges can be addressed with a detagging-fluorination of an immobilized silyl ether motif.By overcoming the susceptibility towards hydrolysis, optimized detagging conditions (improved reaction time, fluorination reagent, linker, and resin) could afford the highly sterically hindered silyl fluoride motifs, that are commonly applied in radiochemistry in small and semipreparative scales. The described reaction conditions with fluorine-19 are transferrable to conditions with [18F]fluoride and silyl fluorides were obtained after approx. 10 min reaction time and in high-purity after mechanical filtration.We present a proof-of-concept study for a detagging-fluorination of two silyl ethers that are bound to an optimized amino alcohol resin. We show with our model substrate that our solid-phase linker combination is capable of yielding the desired silicon fluoride in amounts sufficient for biological studies in animals or humans under standard fluorination conditions that may also be transferred to a radiolabelling setting. In conclusion, our presented approach could optimize the molar activity and simplify the preparation of radiofluorinated silyl fluorides.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Detagging
|2 Other
650 _ 7 |a Fluorine-18
|2 Other
650 _ 7 |a PET
|2 Other
650 _ 7 |a Radiofluorination
|2 Other
650 _ 7 |a SiFA
|2 Other
650 _ 7 |a Silyl fluorides
|2 Other
650 _ 7 |a Solid phase synthesis
|2 Other
650 _ 7 |a Solid support
|2 Other
700 1 _ |a Greiner, Luca
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kopka, Klaus
|b 2
700 1 _ |a Schäfer, Martin
|0 P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1186/s41181-022-00167-y
|g Vol. 7, no. 1, p. 15
|0 PERI:(DE-600)2843088-8
|n 1
|p 15
|t EJNMMI radiopharmacy and chemistry
|v 7
|y 2022
|x 2365-421X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180487
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)35d17d863048f286ee0c253b7b76b907
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:19:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:19:01Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-02-14T16:19:01Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
920 2 _ |0 I:(DE-He78)E030-20160331
|k E030
|l Radiopharmazeutische Chemie
|x 0
920 1 _ |0 I:(DE-He78)E030-20160331
|k E030
|l Radiopharmazeutische Chemie
|x 0
920 0 _ |0 I:(DE-He78)E030-20160331
|k E030
|l Radiopharmazeutische Chemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E030-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21