TY - JOUR
AU - Kebede, Mihiretu
AU - Le Cornet, Charlotte
AU - Turzanski-Fortner, Renée
TI - In-depth evaluation of machine learning methods for semi-automating article screening in a systematic review of mechanistic literature.
JO - Cordis
VL - 14
IS - 2
SN - 1759-2879
CY - Sao Paulo
PB - Programa de Estudos Pós-Graduados em História
M1 - DKFZ-2022-01433
SP - 156-172
PY - 2023
N1 - #EA:C020#LA:C020# / 2023 Mar;14(2):156-172
AB - We aimed to evaluate the performance of supervised machine learning algorithms in predicting articles relevant for full-text review in a systematic review. Overall, 16,430 manually screened titles/abstracts, including 861 references identified relevant for full-text review were used for the analysis. Of these, 40
KW - Automated screening (Other)
KW - Citation Screening (Other)
KW - Machine Learning (Other)
KW - NLP (Other)
KW - Natural Language Processing (Other)
KW - Systematic review (Other)
KW - Text mining (Other)
LB - PUB:(DE-HGF)16
C6 - pmid:35798691
DO - DOI:10.1002/jrsm.1589
UR - https://inrepo02.dkfz.de/record/180603
ER -