000180644 001__ 180644
000180644 005__ 20240229145626.0
000180644 0247_ $$2doi$$a10.1002/ijc.34167
000180644 0247_ $$2pmid$$apmid:35809038
000180644 0247_ $$2ISSN$$a0020-7136
000180644 0247_ $$2ISSN$$a1097-0215
000180644 0247_ $$2altmetric$$aaltmetric:130910545
000180644 037__ $$aDKFZ-2022-01449
000180644 041__ $$aEnglish
000180644 082__ $$a610
000180644 1001_ $$00000-0001-6630-7468$$aLi, Mengmeng$$b0
000180644 245__ $$aThe influence of postscreening follow-up time and participant characteristics on estimates of overdiagnosis from lung cancer screening trials.
000180644 260__ $$aBognor Regis$$bWiley-Liss$$c2022
000180644 3367_ $$2DRIVER$$aarticle
000180644 3367_ $$2DataCite$$aOutput Types/Journal article
000180644 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663232208_7133
000180644 3367_ $$2BibTeX$$aARTICLE
000180644 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180644 3367_ $$00$$2EndNote$$aJournal Article
000180644 500__ $$a2022 Nov 1;151(9):1491-1501
000180644 520__ $$aWe aimed to explore the underlying reasons that estimates of overdiagnosis vary across and within low-dose computed tomography (LDCT) lung cancer screening trials. We conducted a systematic review to identify estimates of overdiagnosis from randomised controlled trials of LDCT screening. We then analysed the association of Ps (the excess incidence of lung cancer as a proportion of screen-detected cases) with postscreening follow-up time using a linear random effects meta-regression model. Separately, we analysed annual Ps estimates from the US National Lung Screening Trial (NLST) and German Lung Cancer Screening Intervention Trial (LUSI) using exponential decay models with asymptotes. We conducted stratified analyses to investigate participant characteristics associated with Ps using the extended follow-up data from NLST. Among 12 overdiagnosis estimates from 8 trials, the postscreening follow-up ranged from 3.8 to 9.3 years, and Ps ranged from -27.0% (ITALUNG, 8.3 years follow-up) to 67.2% (DLCST, 5.0 years follow-up). Across trials, 39.1% of the variation in Ps was explained by postscreening follow-up time. The annual changes in Ps were -3.5% and -3.9% in the NLST and LUSI trials, respectively. Ps was predicted to plateau at 2.2% for NLST and 9.2% for LUSI with hypothetical infinite follow-up. In NLST, Ps increased with age from -14.9% (55-59 years) to 21.7% (70-74 years), and time trends in Ps varied by histological type. The findings suggest that differences in postscreening follow-up time partially explain variation in overdiagnosis estimates across lung cancer screening trials. Estimates of overdiagnosis should be interpreted in the context of postscreening follow-up and population characteristics.
000180644 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000180644 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180644 650_7 $$2Other$$alung cancer screening
000180644 650_7 $$2Other$$aoverdiagnosis
000180644 650_7 $$2Other$$arandomised controlled trial
000180644 7001_ $$aZhang, Li$$b1
000180644 7001_ $$00000-0003-3624-1394$$aCharvat, Hadrien$$b2
000180644 7001_ $$aCallister, Matthew E$$b3
000180644 7001_ $$aSasieni, Peter$$b4
000180644 7001_ $$0P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b$$aChristodoulou, Evangelia$$b5$$udkfz
000180644 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b6$$udkfz
000180644 7001_ $$aJohansson, Mattias$$b7
000180644 7001_ $$aCarvalho, Andre L$$b8
000180644 7001_ $$aVaccarella, Salvatore$$b9
000180644 7001_ $$00000-0001-6041-6866$$aRobbins, Hilary A$$b10
000180644 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.34167$$gp. ijc.34167$$n9$$p1491-1501$$tInternational journal of cancer$$v151$$x0020-7136$$y2022
000180644 909CO $$ooai:inrepo02.dkfz.de:180644$$pVDB
000180644 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8da2eca0bc6341c8681c317fe2b8e27b$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000180644 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000180644 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000180644 9141_ $$y2022
000180644 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger
000180644 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000180644 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04
000180644 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000180644 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-25$$wger
000180644 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2021$$d2022-11-25
000180644 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2021$$d2022-11-25
000180644 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000180644 980__ $$ajournal
000180644 980__ $$aVDB
000180644 980__ $$aI:(DE-He78)C020-20160331
000180644 980__ $$aUNRESTRICTED