000180681 001__ 180681
000180681 005__ 20240229145628.0
000180681 0247_ $$2doi$$a10.1002/brb3.2670
000180681 0247_ $$2pmid$$apmid:35833240
000180681 0247_ $$2altmetric$$aaltmetric:132471719
000180681 037__ $$aDKFZ-2022-01481
000180681 041__ $$aEnglish
000180681 082__ $$a610
000180681 1001_ $$0P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2$$aZhu, Anna$$b0$$eFirst author$$udkfz
000180681 245__ $$aPlant-based dietary patterns and cognitive function: A prospective cohort analysis of elderly individuals in China (2008-2018).
000180681 260__ $$aMalden, Mass.$$bWiley$$c2022
000180681 3367_ $$2DRIVER$$aarticle
000180681 3367_ $$2DataCite$$aOutput Types/Journal article
000180681 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661409037_6884
000180681 3367_ $$2BibTeX$$aARTICLE
000180681 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180681 3367_ $$00$$2EndNote$$aJournal Article
000180681 500__ $$a#EA:C070# / 2022 Aug;12(8):e2670
000180681 520__ $$aPlant-based diets confer health benefits, especially on the prevention of noncommunicable diseases. The relationship between plant-based dietary patterns on cognitive function as a neurological outcome needs more evidence. We aimed to assess the associations between plant-based dietary patterns and cognitive function among Chinese older adults.We used four waves (2008-2018) of the Chinese Longitudinal Healthy Longevity Survey. We included 6136 participants aged 65 years and older with normal cognition at baseline. We constructed an overall plant-based diet index (PDI), healthful plant-based diet index (hPDI), and unhealthful plant-based diet index (uPDI) from questionnaires. We used the Mini-Mental State Examination (MMSE) to assess cognitive function. We used the multivariable-adjusted generalized estimating equation to explore the corresponding associations.The multivariable-adjusted models showed inverse associations between plant-based dietary patterns and cognitive function. The highest quartiles of PDI and hPDI were associated with a 55% (odds ratio [OR] = 0.45, 95% CI: 0.39, 0.52) decrease and a 39% (OR = 0.61, 95% CI: 0.54, 0.70) decrease in the odds of cognitive impairment (MMSE < 24), compared with the lowest quartile. In contrast, the highest quartile of uPDI was associated with an increased risk (OR = 2.03, 95% CI: 1.79, 2.31) of cognitive impairment. We did not observe pronounced differences by selected socioeconomic status, physical activity, residential greenness, and APOE ε4 status.Our findings suggested that adherence to healthy plant-based dietary patterns was associated with lower risks of cognitive impairment among older adults, and unhealthy plant-based dietary patterns were related to higher risks of cognitive impairment.
000180681 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000180681 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180681 650_7 $$2Other$$acognitive function
000180681 650_7 $$2Other$$ahealthy longevity
000180681 650_7 $$2Other$$aplant-based dietary patterns
000180681 7001_ $$aYuan, Changzheng$$b1
000180681 7001_ $$aPretty, Jules$$b2
000180681 7001_ $$00000-0002-5002-118X$$aJi, John S$$b3
000180681 773__ $$0PERI:(DE-600)2623587-0$$a10.1002/brb3.2670$$n8$$pe2670$$tBrain and behavior$$v12$$x2162-3279$$y2022
000180681 909CO $$ooai:inrepo02.dkfz.de:180681$$pVDB
000180681 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000180681 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000180681 9141_ $$y2022
000180681 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-27
000180681 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000180681 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000180681 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000180681 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000180681 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN BEHAV : 2021$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-04-16T15:13:12Z
000180681 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-04-16T15:13:12Z
000180681 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-04-16T15:13:12Z
000180681 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-22
000180681 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-22
000180681 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000180681 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000180681 980__ $$ajournal
000180681 980__ $$aVDB
000180681 980__ $$aI:(DE-He78)C070-20160331
000180681 980__ $$aUNRESTRICTED