001     180681
005     20240229145628.0
024 7 _ |a 10.1002/brb3.2670
|2 doi
024 7 _ |a pmid:35833240
|2 pmid
024 7 _ |a altmetric:132471719
|2 altmetric
037 _ _ |a DKFZ-2022-01481
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhu, Anna
|0 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2
|b 0
|e First author
|u dkfz
245 _ _ |a Plant-based dietary patterns and cognitive function: A prospective cohort analysis of elderly individuals in China (2008-2018).
260 _ _ |a Malden, Mass.
|c 2022
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661409037_6884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070# / 2022 Aug;12(8):e2670
520 _ _ |a Plant-based diets confer health benefits, especially on the prevention of noncommunicable diseases. The relationship between plant-based dietary patterns on cognitive function as a neurological outcome needs more evidence. We aimed to assess the associations between plant-based dietary patterns and cognitive function among Chinese older adults.We used four waves (2008-2018) of the Chinese Longitudinal Healthy Longevity Survey. We included 6136 participants aged 65 years and older with normal cognition at baseline. We constructed an overall plant-based diet index (PDI), healthful plant-based diet index (hPDI), and unhealthful plant-based diet index (uPDI) from questionnaires. We used the Mini-Mental State Examination (MMSE) to assess cognitive function. We used the multivariable-adjusted generalized estimating equation to explore the corresponding associations.The multivariable-adjusted models showed inverse associations between plant-based dietary patterns and cognitive function. The highest quartiles of PDI and hPDI were associated with a 55% (odds ratio [OR] = 0.45, 95% CI: 0.39, 0.52) decrease and a 39% (OR = 0.61, 95% CI: 0.54, 0.70) decrease in the odds of cognitive impairment (MMSE < 24), compared with the lowest quartile. In contrast, the highest quartile of uPDI was associated with an increased risk (OR = 2.03, 95% CI: 1.79, 2.31) of cognitive impairment. We did not observe pronounced differences by selected socioeconomic status, physical activity, residential greenness, and APOE ε4 status.Our findings suggested that adherence to healthy plant-based dietary patterns was associated with lower risks of cognitive impairment among older adults, and unhealthy plant-based dietary patterns were related to higher risks of cognitive impairment.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a cognitive function
|2 Other
650 _ 7 |a healthy longevity
|2 Other
650 _ 7 |a plant-based dietary patterns
|2 Other
700 1 _ |a Yuan, Changzheng
|b 1
700 1 _ |a Pretty, Jules
|b 2
700 1 _ |a Ji, John S
|0 0000-0002-5002-118X
|b 3
773 _ _ |a 10.1002/brb3.2670
|0 PERI:(DE-600)2623587-0
|n 8
|p e2670
|t Brain and behavior
|v 12
|y 2022
|x 2162-3279
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180681
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e71d98af5fac4f81eb58e74b7b3095c2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN BEHAV : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:12Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-04-16T15:13:12Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-22
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21