001     180692
005     20240918080705.0
024 7 _ |a 10.1038/s41598-022-15040-w
|2 doi
024 7 _ |a pmid:35773276
|2 pmid
024 7 _ |a pmc:PMC9247052
|2 pmc
024 7 _ |a altmetric:130472606
|2 altmetric
037 _ _ |a DKFZ-2022-01488
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Studier-Fischer, Alexander
|b 0
245 _ _ |a Spectral organ fingerprints for machine learning-based intraoperative tissue classification with hyperspectral imaging in a porcine model.
260 _ _ |a [London]
|c 2022
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726639608_5616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Visual discrimination of tissue during surgery can be challenging since different tissues appear similar to the human eye. Hyperspectral imaging (HSI) removes this limitation by associating each pixel with high-dimensional spectral information. While previous work has shown its general potential to discriminate tissue, clinical translation has been limited due to the method's current lack of robustness and generalizability. Specifically, the scientific community is lacking a comprehensive spectral tissue atlas, and it is unknown whether variability in spectral reflectance is primarily explained by tissue type rather than the recorded individual or specific acquisition conditions. The contribution of this work is threefold: (1) Based on an annotated medical HSI data set (9059 images from 46 pigs), we present a tissue atlas featuring spectral fingerprints of 20 different porcine organs and tissue types. (2) Using the principle of mixed model analysis, we show that the greatest source of variability related to HSI images is the organ under observation. (3) We show that HSI-based fully-automatic tissue differentiation of 20 organ classes with deep neural networks is possible with high accuracy (> 95%). We conclude from our study that automatic tissue discrimination based on HSI data is feasible and could thus aid in intraoperative decisionmaking and pave the way for context-aware computer-assisted surgery systems and autonomous robotics.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Hyperspectral Imaging
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a Neural Networks, Computer
|2 MeSH
650 _ 2 |a Swine
|2 MeSH
700 1 _ |a Seidlitz, Silvia
|0 P:(DE-He78)6f627fc52580baaa9c8dd007c7b32f8f
|b 1
|u dkfz
700 1 _ |a Sellner, Jan
|0 P:(DE-He78)c26326d6f5e4968993ff08db55ee2381
|b 2
|u dkfz
700 1 _ |a Özdemir, Berkin
|b 3
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 4
|u dkfz
700 1 _ |a Ayala, Leonardo
|0 0000-0002-3574-2085
|b 5
700 1 _ |a Odenthal, Jan
|b 6
700 1 _ |a Knödler, Samuel
|0 0000-0001-5798-8003
|b 7
700 1 _ |a Kowalewski, Karl Friedrich
|0 0000-0003-2931-6247
|b 8
700 1 _ |a Haney, Caelan Max
|0 0000-0002-4209-9470
|b 9
700 1 _ |a Camplisson, Isabella
|0 0000-0001-9653-2789
|b 10
700 1 _ |a Dietrich, Maximilian
|0 0000-0003-0960-038X
|b 11
700 1 _ |a Schmidt, Karsten
|0 0000-0001-8373-9406
|b 12
700 1 _ |a Salg, Gabriel Alexander
|0 0000-0002-3964-3527
|b 13
700 1 _ |a Kenngott, Hannes Götz
|b 14
700 1 _ |a Adler, Tim
|0 P:(DE-He78)ae131915396ed2f27752c043e123897e
|b 15
|u dkfz
700 1 _ |a Schreck, Nicholas
|0 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
|b 16
|u dkfz
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 17
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 18
|u dkfz
700 1 _ |a Maier-Hein, Lena
|0 P:(DE-He78)26a1176cd8450660333a012075050072
|b 19
|u dkfz
700 1 _ |a Müller-Stich, Beat Peter
|b 20
700 1 _ |a Nickel, Felix
|0 0000-0001-6066-8238
|b 21
773 _ _ |a 10.1038/s41598-022-15040-w
|g Vol. 12, no. 1, p. 11028
|0 PERI:(DE-600)2615211-3
|n 1
|p 11028
|t Scientific reports
|v 12
|y 2022
|x 2045-2322
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180692
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6f627fc52580baaa9c8dd007c7b32f8f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c26326d6f5e4968993ff08db55ee2381
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 0000-0002-3574-2085
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)ae131915396ed2f27752c043e123897e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)0d054b6843ace36d1c965b6cb938d1c9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 17
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-He78)26a1176cd8450660333a012075050072
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-08T09:38:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-08T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
920 1 _ |0 I:(DE-He78)E130-20160331
|k E130
|l E130 Intelligente Medizinische Systeme
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 1
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E130-20160331
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21