000180698 001__ 180698 000180698 005__ 20240229145629.0 000180698 0247_ $$2doi$$a10.1038/s41467-022-30695-9 000180698 0247_ $$2pmid$$apmid:35840566 000180698 0247_ $$2altmetric$$aaltmetric:132652279 000180698 037__ $$aDKFZ-2022-01494 000180698 041__ $$aEnglish 000180698 082__ $$a500 000180698 1001_ $$00000-0002-3005-4523$$aAntonelli, Michela$$b0 000180698 245__ $$aThe Medical Segmentation Decathlon. 000180698 260__ $$a[London]$$bNature Publishing Group UK$$c2022 000180698 3367_ $$2DRIVER$$aarticle 000180698 3367_ $$2DataCite$$aOutput Types/Journal article 000180698 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658138861_17496 000180698 3367_ $$2BibTeX$$aARTICLE 000180698 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000180698 3367_ $$00$$2EndNote$$aJournal Article 000180698 500__ $$a#EA:E130#LA:E130# 000180698 520__ $$aInternational challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. 000180698 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000180698 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000180698 7001_ $$0P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aReinke, Annika$$b1$$eFirst author 000180698 7001_ $$00000-0001-8734-6482$$aBakas, Spyridon$$b2 000180698 7001_ $$aFarahani, Keyvan$$b3 000180698 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b4 000180698 7001_ $$00000-0001-5733-2127$$aLandman, Bennett A$$b5 000180698 7001_ $$00000-0003-1554-1291$$aLitjens, Geert$$b6 000180698 7001_ $$00000-0003-4136-5690$$aMenze, Bjoern$$b7 000180698 7001_ $$aRonneberger, Olaf$$b8 000180698 7001_ $$aSummers, Ronald M$$b9 000180698 7001_ $$avan Ginneken, Bram$$b10 000180698 7001_ $$aBilello, Michel$$b11 000180698 7001_ $$aBilic, Patrick$$b12 000180698 7001_ $$aChrist, Patrick F$$b13 000180698 7001_ $$00000-0002-6554-0310$$aDo, Richard K G$$b14 000180698 7001_ $$aGollub, Marc J$$b15 000180698 7001_ $$aHeckers, Stephan H$$b16 000180698 7001_ $$00000-0001-6753-3221$$aHuisman, Henkjan$$b17 000180698 7001_ $$aJarnagin, William R$$b18 000180698 7001_ $$aMcHugo, Maureen K$$b19 000180698 7001_ $$00000-0002-6876-5507$$aNapel, Sandy$$b20 000180698 7001_ $$00000-0002-1076-7948$$aPernicka, Jennifer S Golia$$b21 000180698 7001_ $$aRhode, Kawal$$b22 000180698 7001_ $$aTobon-Gomez, Catalina$$b23 000180698 7001_ $$aVorontsov, Eugene$$b24 000180698 7001_ $$aMeakin, James A$$b25 000180698 7001_ $$aOurselin, Sebastien$$b26 000180698 7001_ $$0P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aWiesenfarth, Manuel$$b27 000180698 7001_ $$aArbeláez, Pablo$$b28 000180698 7001_ $$00000-0003-2309-8517$$aBae, Byeonguk$$b29 000180698 7001_ $$aChen, Sihong$$b30 000180698 7001_ $$aDaza, Laura$$b31 000180698 7001_ $$00000-0002-5940-0063$$aFeng, Jianjiang$$b32 000180698 7001_ $$aHe, Baochun$$b33 000180698 7001_ $$0P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aIsensee, Fabian$$b34 000180698 7001_ $$aJi, Yuanfeng$$b35 000180698 7001_ $$00000-0003-0075-979X$$aJia, Fucang$$b36 000180698 7001_ $$aKim, Ildoo$$b37 000180698 7001_ $$aMaier-Hein, Klaus$$b38 000180698 7001_ $$00000-0002-1672-2185$$aMerhof, Dorit$$b39 000180698 7001_ $$aPai, Akshay$$b40 000180698 7001_ $$aPark, Beomhee$$b41 000180698 7001_ $$00000-0002-0358-4692$$aPerslev, Mathias$$b42 000180698 7001_ $$aRezaiifar, Ramin$$b43 000180698 7001_ $$aRippel, Oliver$$b44 000180698 7001_ $$aSarasua, Ignacio$$b45 000180698 7001_ $$aShen, Wei$$b46 000180698 7001_ $$aSon, Jaemin$$b47 000180698 7001_ $$aWachinger, Christian$$b48 000180698 7001_ $$aWang, Liansheng$$b49 000180698 7001_ $$aWang, Yan$$b50 000180698 7001_ $$aXia, Yingda$$b51 000180698 7001_ $$aXu, Daguang$$b52 000180698 7001_ $$00000-0003-0225-7662$$aXu, Zhanwei$$b53 000180698 7001_ $$00000-0003-2195-2847$$aZheng, Yefeng$$b54 000180698 7001_ $$aSimpson, Amber L$$b55 000180698 7001_ $$0P:(DE-He78)26a1176cd8450660333a012075050072$$aMaier-Hein, Lena$$b56$$eLast author 000180698 7001_ $$00000-0003-1284-2558$$aCardoso, M Jorge$$b57 000180698 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-022-30695-9$$gVol. 13, no. 1, p. 4128$$n1$$p4128$$tNature Communications$$v13$$x2041-1723$$y2022 000180698 909CO $$ooai:inrepo02.dkfz.de:180698$$pVDB 000180698 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)97e904f47dab556a77c0149cd0002591$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000180698 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ 000180698 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1042737c83ba70ec508bdd99f0096864$$aDeutsches Krebsforschungszentrum$$b27$$kDKFZ 000180698 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa$$aDeutsches Krebsforschungszentrum$$b34$$kDKFZ 000180698 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)26a1176cd8450660333a012075050072$$aDeutsches Krebsforschungszentrum$$b56$$kDKFZ 000180698 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000180698 9141_ $$y2022 000180698 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02 000180698 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2021$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T14:44:21Z 000180698 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T14:44:21Z 000180698 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-10-13T14:44:21Z 000180698 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11 000180698 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2021$$d2022-11-11 000180698 9202_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0 000180698 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0 000180698 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1 000180698 9201_ $$0I:(DE-He78)E230-20160331$$kE230$$lE230 Medizinische Bildverarbeitung$$x2 000180698 980__ $$ajournal 000180698 980__ $$aVDB 000180698 980__ $$aI:(DE-He78)E130-20160331 000180698 980__ $$aI:(DE-He78)C060-20160331 000180698 980__ $$aI:(DE-He78)E230-20160331 000180698 980__ $$aUNRESTRICTED