TY - JOUR AU - Antonelli, Michela AU - Reinke, Annika AU - Bakas, Spyridon AU - Farahani, Keyvan AU - Kopp-Schneider, Annette AU - Landman, Bennett A AU - Litjens, Geert AU - Menze, Bjoern AU - Ronneberger, Olaf AU - Summers, Ronald M AU - van Ginneken, Bram AU - Bilello, Michel AU - Bilic, Patrick AU - Christ, Patrick F AU - Do, Richard K G AU - Gollub, Marc J AU - Heckers, Stephan H AU - Huisman, Henkjan AU - Jarnagin, William R AU - McHugo, Maureen K AU - Napel, Sandy AU - Pernicka, Jennifer S Golia AU - Rhode, Kawal AU - Tobon-Gomez, Catalina AU - Vorontsov, Eugene AU - Meakin, James A AU - Ourselin, Sebastien AU - Wiesenfarth, Manuel AU - Arbeláez, Pablo AU - Bae, Byeonguk AU - Chen, Sihong AU - Daza, Laura AU - Feng, Jianjiang AU - He, Baochun AU - Isensee, Fabian AU - Ji, Yuanfeng AU - Jia, Fucang AU - Kim, Ildoo AU - Maier-Hein, Klaus AU - Merhof, Dorit AU - Pai, Akshay AU - Park, Beomhee AU - Perslev, Mathias AU - Rezaiifar, Ramin AU - Rippel, Oliver AU - Sarasua, Ignacio AU - Shen, Wei AU - Son, Jaemin AU - Wachinger, Christian AU - Wang, Liansheng AU - Wang, Yan AU - Xia, Yingda AU - Xu, Daguang AU - Xu, Zhanwei AU - Zheng, Yefeng AU - Simpson, Amber L AU - Maier-Hein, Lena AU - Cardoso, M Jorge TI - The Medical Segmentation Decathlon. JO - Nature Communications VL - 13 IS - 1 SN - 2041-1723 CY - [London] PB - Nature Publishing Group UK M1 - DKFZ-2022-01494 SP - 4128 PY - 2022 N1 - #EA:E130#LA:E130# AB - International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. LB - PUB:(DE-HGF)16 C6 - pmid:35840566 DO - DOI:10.1038/s41467-022-30695-9 UR - https://inrepo02.dkfz.de/record/180698 ER -