001 | 180698 | ||
005 | 20240229145629.0 | ||
024 | 7 | _ | |a 10.1038/s41467-022-30695-9 |2 doi |
024 | 7 | _ | |a pmid:35840566 |2 pmid |
024 | 7 | _ | |a altmetric:132652279 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-01494 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Antonelli, Michela |0 0000-0002-3005-4523 |b 0 |
245 | _ | _ | |a The Medical Segmentation Decathlon. |
260 | _ | _ | |a [London] |c 2022 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1658138861_17496 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E130#LA:E130# |
520 | _ | _ | |a International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)-a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
700 | 1 | _ | |a Reinke, Annika |0 P:(DE-He78)97e904f47dab556a77c0149cd0002591 |b 1 |e First author |
700 | 1 | _ | |a Bakas, Spyridon |0 0000-0001-8734-6482 |b 2 |
700 | 1 | _ | |a Farahani, Keyvan |b 3 |
700 | 1 | _ | |a Kopp-Schneider, Annette |0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |b 4 |
700 | 1 | _ | |a Landman, Bennett A |0 0000-0001-5733-2127 |b 5 |
700 | 1 | _ | |a Litjens, Geert |0 0000-0003-1554-1291 |b 6 |
700 | 1 | _ | |a Menze, Bjoern |0 0000-0003-4136-5690 |b 7 |
700 | 1 | _ | |a Ronneberger, Olaf |b 8 |
700 | 1 | _ | |a Summers, Ronald M |b 9 |
700 | 1 | _ | |a van Ginneken, Bram |b 10 |
700 | 1 | _ | |a Bilello, Michel |b 11 |
700 | 1 | _ | |a Bilic, Patrick |b 12 |
700 | 1 | _ | |a Christ, Patrick F |b 13 |
700 | 1 | _ | |a Do, Richard K G |0 0000-0002-6554-0310 |b 14 |
700 | 1 | _ | |a Gollub, Marc J |b 15 |
700 | 1 | _ | |a Heckers, Stephan H |b 16 |
700 | 1 | _ | |a Huisman, Henkjan |0 0000-0001-6753-3221 |b 17 |
700 | 1 | _ | |a Jarnagin, William R |b 18 |
700 | 1 | _ | |a McHugo, Maureen K |b 19 |
700 | 1 | _ | |a Napel, Sandy |0 0000-0002-6876-5507 |b 20 |
700 | 1 | _ | |a Pernicka, Jennifer S Golia |0 0000-0002-1076-7948 |b 21 |
700 | 1 | _ | |a Rhode, Kawal |b 22 |
700 | 1 | _ | |a Tobon-Gomez, Catalina |b 23 |
700 | 1 | _ | |a Vorontsov, Eugene |b 24 |
700 | 1 | _ | |a Meakin, James A |b 25 |
700 | 1 | _ | |a Ourselin, Sebastien |b 26 |
700 | 1 | _ | |a Wiesenfarth, Manuel |0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |b 27 |
700 | 1 | _ | |a Arbeláez, Pablo |b 28 |
700 | 1 | _ | |a Bae, Byeonguk |0 0000-0003-2309-8517 |b 29 |
700 | 1 | _ | |a Chen, Sihong |b 30 |
700 | 1 | _ | |a Daza, Laura |b 31 |
700 | 1 | _ | |a Feng, Jianjiang |0 0000-0002-5940-0063 |b 32 |
700 | 1 | _ | |a He, Baochun |b 33 |
700 | 1 | _ | |a Isensee, Fabian |0 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |b 34 |
700 | 1 | _ | |a Ji, Yuanfeng |b 35 |
700 | 1 | _ | |a Jia, Fucang |0 0000-0003-0075-979X |b 36 |
700 | 1 | _ | |a Kim, Ildoo |b 37 |
700 | 1 | _ | |a Maier-Hein, Klaus |b 38 |
700 | 1 | _ | |a Merhof, Dorit |0 0000-0002-1672-2185 |b 39 |
700 | 1 | _ | |a Pai, Akshay |b 40 |
700 | 1 | _ | |a Park, Beomhee |b 41 |
700 | 1 | _ | |a Perslev, Mathias |0 0000-0002-0358-4692 |b 42 |
700 | 1 | _ | |a Rezaiifar, Ramin |b 43 |
700 | 1 | _ | |a Rippel, Oliver |b 44 |
700 | 1 | _ | |a Sarasua, Ignacio |b 45 |
700 | 1 | _ | |a Shen, Wei |b 46 |
700 | 1 | _ | |a Son, Jaemin |b 47 |
700 | 1 | _ | |a Wachinger, Christian |b 48 |
700 | 1 | _ | |a Wang, Liansheng |b 49 |
700 | 1 | _ | |a Wang, Yan |b 50 |
700 | 1 | _ | |a Xia, Yingda |b 51 |
700 | 1 | _ | |a Xu, Daguang |b 52 |
700 | 1 | _ | |a Xu, Zhanwei |0 0000-0003-0225-7662 |b 53 |
700 | 1 | _ | |a Zheng, Yefeng |0 0000-0003-2195-2847 |b 54 |
700 | 1 | _ | |a Simpson, Amber L |b 55 |
700 | 1 | _ | |a Maier-Hein, Lena |0 P:(DE-He78)26a1176cd8450660333a012075050072 |b 56 |e Last author |
700 | 1 | _ | |a Cardoso, M Jorge |0 0000-0003-1284-2558 |b 57 |
773 | _ | _ | |a 10.1038/s41467-022-30695-9 |g Vol. 13, no. 1, p. 4128 |0 PERI:(DE-600)2553671-0 |n 1 |p 4128 |t Nature Communications |v 13 |y 2022 |x 2041-1723 |
909 | C | O | |o oai:inrepo02.dkfz.de:180698 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)97e904f47dab556a77c0149cd0002591 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 27 |6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 34 |6 P:(DE-He78)7ea9af59d03ec7deb982a0e0562358fa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 56 |6 P:(DE-He78)26a1176cd8450660333a012075050072 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-10-13T14:44:21Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2021 |d 2022-11-11 |
920 | 2 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E130-20160331 |k E130 |l E130 Intelligente Medizinische Systeme |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 1 |
920 | 1 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E130-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a I:(DE-He78)E230-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|