000180773 001__ 180773
000180773 005__ 20240229145631.0
000180773 0247_ $$2doi$$a10.1016/j.zemedi.2022.06.002
000180773 0247_ $$2pmid$$apmid:35868888
000180773 0247_ $$2ISSN$$a0040-5973
000180773 0247_ $$2ISSN$$a0939-3889
000180773 0247_ $$2ISSN$$a1876-4436
000180773 037__ $$aDKFZ-2022-01538
000180773 041__ $$aEnglish
000180773 082__ $$a610
000180773 1001_ $$0P:(DE-He78)b4371bfbf1c75613142130d9b68434aa$$aWehrse, Eckhard$$b0$$eFirst author
000180773 245__ $$aUltrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man.
000180773 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
000180773 3367_ $$2DRIVER$$aarticle
000180773 3367_ $$2DataCite$$aOutput Types/Journal article
000180773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1687350640_6280
000180773 3367_ $$2BibTeX$$aARTICLE
000180773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180773 3367_ $$00$$2EndNote$$aJournal Article
000180773 500__ $$a#EA:E010#LA:E025# / 2023 May;33(2):155-167
000180773 520__ $$aX-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
000180773 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000180773 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180773 650_7 $$2Other$$aMicro-CT
000180773 650_7 $$2Other$$aPhoton-Counting CT
000180773 650_7 $$2Other$$aTranslational Medicine
000180773 7001_ $$0P:(DE-He78)aa9e911e6cdd9a2a06c0c603873a3d9f$$aKlein, Laura$$b1$$udkfz
000180773 7001_ $$0P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c$$aRotkopf, Lukas Thomas$$b2$$udkfz
000180773 7001_ $$aStiller, W.$$b3
000180773 7001_ $$aFinke, M.$$b4
000180773 7001_ $$0P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aEchner, Gernot$$b5$$udkfz
000180773 7001_ $$0P:(DE-He78)06ec1253cfc102aebeeb536a65133370$$aGlowa, Christin$$b6$$udkfz
000180773 7001_ $$aHeinze, S.$$b7
000180773 7001_ $$0P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aZiener, Christian$$b8$$udkfz
000180773 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b9$$udkfz
000180773 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b10$$udkfz
000180773 7001_ $$0P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aSawall, Stefan$$b11$$eLast author$$udkfz
000180773 773__ $$0PERI:(DE-600)2231492-1$$a10.1016/j.zemedi.2022.06.002$$gp. S0939388922000666$$n2$$p155-167$$tZeitschrift für medizinische Physik$$v33$$x0939-3889$$y2023
000180773 909CO $$ooai:inrepo02.dkfz.de:180773$$pVDB
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b4371bfbf1c75613142130d9b68434aa$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)aa9e911e6cdd9a2a06c0c603873a3d9f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)06ec1253cfc102aebeeb536a65133370$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000180773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000180773 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000180773 9141_ $$y2022
000180773 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000180773 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000180773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ MED PHYS : 2022$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
000180773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
000180773 9202_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000180773 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000180773 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x1
000180773 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x2
000180773 9200_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000180773 980__ $$ajournal
000180773 980__ $$aVDB
000180773 980__ $$aI:(DE-He78)E010-20160331
000180773 980__ $$aI:(DE-He78)E025-20160331
000180773 980__ $$aI:(DE-He78)E040-20160331
000180773 980__ $$aUNRESTRICTED