001     180773
005     20240229145631.0
024 7 _ |a 10.1016/j.zemedi.2022.06.002
|2 doi
024 7 _ |a pmid:35868888
|2 pmid
024 7 _ |a 0040-5973
|2 ISSN
024 7 _ |a 0939-3889
|2 ISSN
024 7 _ |a 1876-4436
|2 ISSN
037 _ _ |a DKFZ-2022-01538
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wehrse, Eckhard
|0 P:(DE-He78)b4371bfbf1c75613142130d9b68434aa
|b 0
|e First author
245 _ _ |a Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man.
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687350640_6280
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E025# / 2023 May;33(2):155-167
520 _ _ |a X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Micro-CT
|2 Other
650 _ 7 |a Photon-Counting CT
|2 Other
650 _ 7 |a Translational Medicine
|2 Other
700 1 _ |a Klein, Laura
|0 P:(DE-He78)aa9e911e6cdd9a2a06c0c603873a3d9f
|b 1
|u dkfz
700 1 _ |a Rotkopf, Lukas Thomas
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 2
|u dkfz
700 1 _ |a Stiller, W.
|b 3
700 1 _ |a Finke, M.
|b 4
700 1 _ |a Echner, Gernot
|0 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
|b 5
|u dkfz
700 1 _ |a Glowa, Christin
|0 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
|b 6
|u dkfz
700 1 _ |a Heinze, S.
|b 7
700 1 _ |a Ziener, Christian
|0 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
|b 8
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 9
|u dkfz
700 1 _ |a Kachelriess, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 10
|u dkfz
700 1 _ |a Sawall, Stefan
|0 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.zemedi.2022.06.002
|g p. S0939388922000666
|0 PERI:(DE-600)2231492-1
|n 2
|p 155-167
|t Zeitschrift für medizinische Physik
|v 33
|y 2023
|x 0939-3889
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180773
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b4371bfbf1c75613142130d9b68434aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)aa9e911e6cdd9a2a06c0c603873a3d9f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z MED PHYS : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 2 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 1
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 2
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21