001     180808
005     20240229145633.0
024 7 _ |a 10.1111/nan.12838
|2 doi
024 7 _ |a pmid:35892159
|2 pmid
024 7 _ |a 0305-1846
|2 ISSN
024 7 _ |a 1365-2990
|2 ISSN
037 _ _ |a DKFZ-2022-01570
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schepke, Elizabeth
|b 0
245 _ _ |a DNA methylation profiling improves routine diagnosis of paediatric CNS tumours: a prospective population-based study.
260 _ _ |a Oxford [u.a.]
|c 2022
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1662467767_6884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Oct;48(6):e12838
520 _ _ |a Paediatric brain tumours are rare and establishing a precise diagnosis can be challenging. Analysis of DNA methylation profiles has been shown to be a reliable method to classify central nervous system (CNS) tumours with high accuracy. We aimed to prospectively analyse CNS tumours diagnosed in Sweden, to assess the clinical impact of adding DNA methylation-based classification to standard paediatric brain tumour diagnostics in an unselected cohort.All CNS tumours diagnosed in children (0-18 years) during 2017-2020 were eligible for inclusion provided sufficient tumour material was available. Tumours were analysed using genome-wide DNA methylation profiling and classified by the MNP brain tumour classifier. The initial histopathological diagnosis was compared to the DNA methylation-based classification. For incongruent results, a blinded re-evaluation was performed by an experienced neuropathologist.240 tumours with a histopathology-based diagnosis were profiled. A high-confidence methylation score of 0.84 or more was reached in 78% of the cases. In 69%, the histopathological diagnosis was confirmed and for some of these also refined, 6% were incongruent and the re-evaluation favoured the methylation-based classification. In the remaining 3% of cases, the methylation class was non-contributory. The change in diagnosis would have had a direct impact on the clinical management in 5% of all patients.Integrating DNA methylation-based tumour classification into routine clinical analysis improves diagnostics and provides molecular information that is important for treatment decisions. The results from methylation profiling should be interpreted in the context of clinical and histopathological information.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA methylation profiling
|2 Other
650 _ 7 |a Molecular classification
|2 Other
650 _ 7 |a Paediatric brain tumours
|2 Other
650 _ 7 |a diagnostics
|2 Other
700 1 _ |a Löfgren, Maja
|b 1
700 1 _ |a Pietsch, Torsten
|b 2
700 1 _ |a Bontell, Thomas Olsson
|b 3
700 1 _ |a Kling, Teresia
|b 4
700 1 _ |a Wenger, Anna
|b 5
700 1 _ |a Vega, Sandra Ferreyra
|b 6
700 1 _ |a Danielsson, Anna
|b 7
700 1 _ |a Dosa, Sandor
|b 8
700 1 _ |a Holm, Stefan
|b 9
700 1 _ |a Öberg, Anders
|b 10
700 1 _ |a Nyman, Per
|b 11
700 1 _ |a Eliasson-Hofvander, Marie
|b 12
700 1 _ |a Sandström, Per-Erik
|b 13
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 14
|u dkfz
700 1 _ |a Lannering, Birgitta
|b 15
700 1 _ |a Sabel, Magnus
|b 16
700 1 _ |a Carén, Helena
|0 0000-0002-8584-555X
|b 17
773 _ _ |a 10.1111/nan.12838
|0 PERI:(DE-600)2008293-9
|n 6
|p e12838
|t Neuropathology & applied neurobiology
|v 48
|y 2022
|x 0305-1846
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180808
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROPATH APPL NEURO : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROPATH APPL NEURO : 2021
|d 2022-11-16
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21