000180812 001__ 180812 000180812 005__ 20240229145633.0 000180812 0247_ $$2doi$$a10.1161/CIRCRESAHA.122.321253 000180812 0247_ $$2ISSN$$a0009-7330 000180812 0247_ $$2ISSN$$a1524-4571 000180812 0247_ $$2altmetric$$aaltmetric:133187111 000180812 0247_ $$2pmid$$apmid:35893593 000180812 037__ $$aDKFZ-2022-01574 000180812 082__ $$a610 000180812 1001_ $$aXue, Hongliang$$b0 000180812 245__ $$aGut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease 000180812 260__ $$aNew York, NY$$bAssoc.$$c2022 000180812 3367_ $$2DRIVER$$aarticle 000180812 3367_ $$2DataCite$$aOutput Types/Journal article 000180812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662467707_14975 000180812 3367_ $$2BibTeX$$aARTICLE 000180812 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000180812 3367_ $$00$$2EndNote$$aJournal Article 000180812 500__ $$a#EA:C070# / 2022 Aug 19;131(5):404-420 000180812 520__ $$aBACKGROUND:Accumulating evidence has shown that disorders in the gut microbiota and derived metabolites affect the development of atherosclerotic cardiovascular disease (ASCVD). However, which and how specific gut microbial metabolites contribute to the progression of atherosclerosis and the clinical relevance of their alterations remain unclear.METHODS:We performed integrated microbiome–metabolome analysis of 30 patients with coronary artery disease (CAD) and 30 age- and sex-matched healthy controls to identify CAD-associated microbial metabolites, which were then assessed in an independent population of patients with ASCVD and controls (n=256). We further investigate the effect of CAD-associated microbial metabolites on atherosclerosis and the mechanisms of the action.RESULTS:Indole-3-propionic acid (IPA), a solely microbially derived tryptophan metabolite, was the most downregulated metabolite in patients with CAD. Circulating IPA was then shown in an independent population to be associated with risk of prevalent ASCVD and correlated with the ASCVD severity. Dietary IPA supplementation alleviates atherosclerotic plaque development in ApoE−/− mice. In murine- and human-derived macrophages, administration of IPA promoted cholesterol efflux from macrophages to ApoA-I through an undescribed miR-142-5p/ABCA1 (ATP-binding cassette transporter A1) signaling pathway. Further in vivo studies demonstrated that IPA facilitates macrophage reverse cholesterol transport, correlating with the regulation of miR-142-5p/ABCA1 pathway, whereas reduced IPA production contributed to the aberrant overexpression of miR-142-5p in macrophages and accelerated the progression of atherosclerosis. Moreover, the miR-142-5p/ABCA1/reverse cholesterol transport axis in macrophages were dysregulated in patients with CAD, and correlated with the changes in circulating IPA levels.CONCLUSIONS:Our study identify a previously unknown link between specific gut microbiota-derived tryptophan metabolite and ASCVD. The microbial metabolite IPA/miR-142-5p/ABCA1 pathway may represent a promising therapeutic target for ASCVD. 000180812 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0 000180812 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de 000180812 7001_ $$0P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9$$aChen, Xuechen$$b1$$eFirst author$$udkfz 000180812 7001_ $$aYu, Chao$$b2 000180812 7001_ $$aDeng, Yuqing$$b3 000180812 7001_ $$aZhang, Yuan$$b4 000180812 7001_ $$00000-0001-8640-4492$$aChen, Shen$$b5 000180812 7001_ $$aChen, Xuechen$$b6 000180812 7001_ $$aChen, Ke$$b7 000180812 7001_ $$aYang, Yan$$b8 000180812 7001_ $$00000-0002-5468-6605$$aLing, Wenhua$$b9 000180812 773__ $$0PERI:(DE-600)1467838-X$$a10.1161/CIRCRESAHA.122.321253$$gp. 10.1161/CIRCRESAHA.122.321253$$n5$$p404-420$$tCirculation research$$v131$$x0009-7330$$y2022 000180812 909CO $$ooai:inrepo02.dkfz.de:180812$$pVDB 000180812 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000180812 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0 000180812 9141_ $$y2022 000180812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000180812 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28 000180812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000180812 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2022-11-17$$wger 000180812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCIRC RES : 2021$$d2022-11-17 000180812 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bCIRC RES : 2021$$d2022-11-17 000180812 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0 000180812 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0 000180812 980__ $$ajournal 000180812 980__ $$aVDB 000180812 980__ $$aI:(DE-He78)C070-20160331 000180812 980__ $$aUNRESTRICTED