001     180877
005     20240320150835.0
024 7 _ |a 10.1038/s41467-020-14351-8
|2 doi
024 7 _ |a pmid:32024845
|2 pmid
024 7 _ |a pmc:PMC7002525
|2 pmc
024 7 _ |a altmetric:75092332
|2 altmetric
037 _ _ |a DKFZ-2022-01626
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Cmero, Marek
|b 0
245 _ _ |a Inferring structural variant cancer cell fraction.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710943634_5840
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium:https://inrepo02.dkfz.de/record/212436 / https://doi.org/10.1038/s41467-022-32338-5
520 _ _ |a We present SVclone, a computational method for inferring the cancer cell fraction of structural variant (SV) breakpoints from whole-genome sequencing data. SVclone accurately determines the variant allele frequencies of both SV breakends, then simultaneously estimates the cancer cell fraction and SV copy number. We assess performance using in silico mixtures of real samples, at known proportions, created from two clonal metastases from the same patient. We find that SVclone's performance is comparable to single-nucleotide variant-based methods, despite having an order of magnitude fewer data points. As part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium, which aggregated whole-genome sequencing data from 2658 cancers across 38 tumour types, we use SVclone to reveal a subset of liver, ovarian and pancreatic cancers with subclonally enriched copy-number neutral rearrangements that show decreased overall survival. SVclone enables improved characterisation of SV intra-tumour heterogeneity.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
650 _ 2 |a DNA Copy Number Variations
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Gene Frequency
|2 MeSH
650 _ 2 |a Genome, Human
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Liver Neoplasms: genetics
|2 MeSH
650 _ 2 |a Liver Neoplasms: pathology
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Neoplasms: pathology
|2 MeSH
650 _ 2 |a Ovarian Neoplasms: genetics
|2 MeSH
650 _ 2 |a Ovarian Neoplasms: pathology
|2 MeSH
650 _ 2 |a Pancreatic Neoplasms: genetics
|2 MeSH
650 _ 2 |a Pancreatic Neoplasms: pathology
|2 MeSH
650 _ 2 |a Prostatic Neoplasms: genetics
|2 MeSH
650 _ 2 |a Prostatic Neoplasms: pathology
|2 MeSH
650 _ 2 |a Sensitivity and Specificity
|2 MeSH
650 _ 2 |a Whole Genome Sequencing
|2 MeSH
700 1 _ |a Yuan, Ke
|b 1
700 1 _ |a Ong, Cheng Soon
|b 2
700 1 _ |a Schröder, Jan
|b 3
700 1 _ |a PCAWG, Evolution
|b 4
700 1 _ |a Heterogeneity Working, Group
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Corcoran, Niall M
|b 6
700 1 _ |a Papenfuss, Tony
|b 7
700 1 _ |a Hovens, Christopher M
|b 8
700 1 _ |a Markowetz, Florian
|b 9
700 1 _ |a Macintyre, Geoff
|b 10
700 1 _ |a PCAWGConsortium
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s41467-020-14351-8
|g Vol. 11, no. 1, p. 730
|0 PERI:(DE-600)2553671-0
|n 1
|p 730
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180877
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 0
920 1 _ |0 I:(DE-He78)B240-20160331
|k B240
|l Bioinformatik und Omics Data Analytics
|x 1
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 2
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 5
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatrische Gliomforschung
|x 6
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 7
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 8
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l B066 Chromatin-Netzwerke
|x 9
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 10
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 11
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 12
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 13
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B240-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21