000180982 001__ 180982
000180982 005__ 20240229145636.0
000180982 0247_ $$2doi$$a10.1016/j.cell.2022.06.049
000180982 0247_ $$2pmid$$apmid:35908548
000180982 0247_ $$2ISSN$$a0092-8674
000180982 0247_ $$2ISSN$$a1097-4172
000180982 0247_ $$2altmetric$$aaltmetric:133396853
000180982 037__ $$aDKFZ-2022-01706
000180982 041__ $$aEnglish
000180982 082__ $$a610
000180982 1001_ $$aCheng, Saifeng$$b0
000180982 245__ $$aThe intrinsic and extrinsic effects of TET proteins during gastrulation.
000180982 260__ $$aNew York, NY$$bElsevier$$c2022
000180982 3367_ $$2DRIVER$$aarticle
000180982 3367_ $$2DataCite$$aOutput Types/Journal article
000180982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661409092_30652
000180982 3367_ $$2BibTeX$$aARTICLE
000180982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180982 3367_ $$00$$2EndNote$$aJournal Article
000180982 500__ $$a2022 Aug 18;185(17):3169-3185.e20
000180982 520__ $$aMice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.
000180982 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000180982 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000180982 650_7 $$2Other$$aDNA demethylation
000180982 650_7 $$2Other$$acell fate decisions
000180982 650_7 $$2Other$$adevelopmental biology
000180982 650_7 $$2Other$$aepigenetics
000180982 650_7 $$2Other$$agenome editing
000180982 650_7 $$2Other$$amouse gastrulation
000180982 650_7 $$2Other$$asingle-cell genomics
000180982 650_7 $$2Other$$astem cells
000180982 7001_ $$aMittnenzweig, Markus$$b1
000180982 7001_ $$aMayshar, Yoav$$b2
000180982 7001_ $$aLifshitz, Aviezer$$b3
000180982 7001_ $$aDunjić, Marko$$b4
000180982 7001_ $$aRais, Yoach$$b5
000180982 7001_ $$aBen-Yair, Raz$$b6
000180982 7001_ $$0P:(DE-He78)6c7c0079533d7a9cda3bb9f463e22ccb$$aGehrs, Stephanie$$b7$$udkfz
000180982 7001_ $$aChomsky, Elad$$b8
000180982 7001_ $$aMukamel, Zohar$$b9
000180982 7001_ $$aRubinstein, Hernan$$b10
000180982 7001_ $$0P:(DE-He78)e674edaa6403c4ef34b2fae4649e654f$$aSchlereth, Katharina$$b11$$udkfz
000180982 7001_ $$aReines, Netta$$b12
000180982 7001_ $$aOrenbuch, Ayelet-Hashahar$$b13
000180982 7001_ $$aTanay, Amos$$b14
000180982 7001_ $$aStelzer, Yonatan$$b15
000180982 773__ $$0PERI:(DE-600)2001951-8$$a10.1016/j.cell.2022.06.049$$gp. S009286742200842X$$n17$$p3169-3185.e20$$tCell$$v185$$x0092-8674$$y2022
000180982 909CO $$ooai:inrepo02.dkfz.de:180982$$pVDB
000180982 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c7c0079533d7a9cda3bb9f463e22ccb$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000180982 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e674edaa6403c4ef34b2fae4649e654f$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000180982 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000180982 9141_ $$y2022
000180982 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000180982 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000180982 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000180982 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000180982 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL : 2021$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000180982 915__ $$0StatID:(DE-HGF)9960$$2StatID$$aIF >= 60$$bCELL : 2021$$d2022-11-09
000180982 9201_ $$0I:(DE-He78)A190-20160331$$kA190$$lA190 Vaskuläre Onkologie und Metastasierung$$x0
000180982 980__ $$ajournal
000180982 980__ $$aVDB
000180982 980__ $$aI:(DE-He78)A190-20160331
000180982 980__ $$aUNRESTRICTED