001     180982
005     20240229145636.0
024 7 _ |a 10.1016/j.cell.2022.06.049
|2 doi
024 7 _ |a pmid:35908548
|2 pmid
024 7 _ |a 0092-8674
|2 ISSN
024 7 _ |a 1097-4172
|2 ISSN
024 7 _ |a altmetric:133396853
|2 altmetric
037 _ _ |a DKFZ-2022-01706
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Cheng, Saifeng
|b 0
245 _ _ |a The intrinsic and extrinsic effects of TET proteins during gastrulation.
260 _ _ |a New York, NY
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661409092_30652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Aug 18;185(17):3169-3185.e20
520 _ _ |a Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA demethylation
|2 Other
650 _ 7 |a cell fate decisions
|2 Other
650 _ 7 |a developmental biology
|2 Other
650 _ 7 |a epigenetics
|2 Other
650 _ 7 |a genome editing
|2 Other
650 _ 7 |a mouse gastrulation
|2 Other
650 _ 7 |a single-cell genomics
|2 Other
650 _ 7 |a stem cells
|2 Other
700 1 _ |a Mittnenzweig, Markus
|b 1
700 1 _ |a Mayshar, Yoav
|b 2
700 1 _ |a Lifshitz, Aviezer
|b 3
700 1 _ |a Dunjić, Marko
|b 4
700 1 _ |a Rais, Yoach
|b 5
700 1 _ |a Ben-Yair, Raz
|b 6
700 1 _ |a Gehrs, Stephanie
|0 P:(DE-He78)6c7c0079533d7a9cda3bb9f463e22ccb
|b 7
|u dkfz
700 1 _ |a Chomsky, Elad
|b 8
700 1 _ |a Mukamel, Zohar
|b 9
700 1 _ |a Rubinstein, Hernan
|b 10
700 1 _ |a Schlereth, Katharina
|0 P:(DE-He78)e674edaa6403c4ef34b2fae4649e654f
|b 11
|u dkfz
700 1 _ |a Reines, Netta
|b 12
700 1 _ |a Orenbuch, Ayelet-Hashahar
|b 13
700 1 _ |a Tanay, Amos
|b 14
700 1 _ |a Stelzer, Yonatan
|b 15
773 _ _ |a 10.1016/j.cell.2022.06.049
|g p. S009286742200842X
|0 PERI:(DE-600)2001951-8
|n 17
|p 3169-3185.e20
|t Cell
|v 185
|y 2022
|x 0092-8674
909 C O |p VDB
|o oai:inrepo02.dkfz.de:180982
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)6c7c0079533d7a9cda3bb9f463e22ccb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)e674edaa6403c4ef34b2fae4649e654f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-09
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b CELL : 2021
|d 2022-11-09
920 1 _ |0 I:(DE-He78)A190-20160331
|k A190
|l A190 Vaskuläre Onkologie und Metastasierung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A190-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21