001     180984
005     20240229145636.0
024 7 _ |a 10.1038/s42003-022-03663-8
|2 doi
024 7 _ |a pmid:35854100
|2 pmid
024 7 _ |a pmc:PMC9296638
|2 pmc
024 7 _ |a altmetric:132798521
|2 altmetric
037 _ _ |a DKFZ-2022-01708
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Laise, Pasquale
|b 0
245 _ _ |a A model for network-based identification and pharmacological targeting of aberrant, replication-permissive transcriptional programs induced by viral infection.
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1659599005_16655
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Research Group “Cellular Polarity and ViralInfection”, German Cancer Research Center (DKFZ), Heidelberg, Germany.
520 _ _ |a SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Here we show that analysis of Master Regulator proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of Master Regulators enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed Master Regulators, based on their experimentally elucidated, context-specific mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based Master Regulator signatures induced by virtually any pathogen.
536 _ _ |a 316 - Infektionen, Entzündung und Krebs (POF4-316)
|0 G:(DE-HGF)POF4-316
|c POF4-316
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a COVID-19: drug therapy
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a SARS-CoV-2
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Virus Diseases
|2 MeSH
650 _ 2 |a Virus Replication
|2 MeSH
700 1 _ |a Stanifer, Megan L
|b 1
700 1 _ |a Bosker, Gideon
|b 2
700 1 _ |a Sun, Xiaoyun
|b 3
700 1 _ |a Triana, Sergio
|b 4
700 1 _ |a Doldan, Patricio
|0 P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb
|b 5
700 1 _ |a La Manna, Federico
|b 6
700 1 _ |a De Menna, Marta
|b 7
700 1 _ |a Realubit, Ronald B
|b 8
700 1 _ |a Pampou, Sergey
|b 9
700 1 _ |a Karan, Charles
|b 10
700 1 _ |a Alexandrov, Theodore
|b 11
700 1 _ |a Kruithof-de Julio, Marianna
|0 0000-0002-6085-7706
|b 12
700 1 _ |a Califano, Andrea
|0 0000-0003-4742-3679
|b 13
700 1 _ |a Boulant, Steeve
|0 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
|b 14
700 1 _ |a Alvarez, Mariano J
|0 0000-0002-7503-2491
|b 15
773 _ _ |a 10.1038/s42003-022-03663-8
|g Vol. 5, no. 1, p. 714
|0 PERI:(DE-600)2919698-X
|n 1
|p 714
|t Communications biology
|v 5
|y 2022
|x 2399-3642
909 C O |o oai:inrepo02.dkfz.de:180984
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)51c7e0db09353baf8fff5d9a63da0abb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)4658b59d5b4e54b919fc63ab1213c78f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-316
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Infektionen, Entzündung und Krebs
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-06-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-06-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-06-15
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-06-15
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-06-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-06-15
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T14:52:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T14:52:02Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-10-13T14:52:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMMUN BIOL : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-He78)F140-20160331
|k F140
|l NWG Infection and Immune Sensing Dynamics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F140-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21