000180985 001__ 180985
000180985 005__ 20240229145636.0
000180985 020__ $$a978-1-0716-2512-5 (print)
000180985 020__ $$a978-1-0716-2513-2 (electronic)
000180985 0247_ $$2doi$$a10.1007/978-1-0716-2513-2_15
000180985 0247_ $$2pmid$$apmid:35867232
000180985 0247_ $$2ISSN$$a1064-3745
000180985 0247_ $$2ISSN$$a1940-6029
000180985 0247_ $$2doi$$a 10.1007/978-1-0716-2513-2_15 
000180985 037__ $$aDKFZ-2022-01709
000180985 041__ $$aEnglish
000180985 082__ $$a570
000180985 1001_ $$0P:(DE-He78)50c2928009c788a6a5f3a0708dfb6df5$$aAutry, Robert$$b0$$eLast author$$udkfz
000180985 245__ $$aPolygenomic Interrogation of Drug Resistance Genes.
000180985 260__ $$a[Heidelberg]$$b[Springer]$$c2022
000180985 3367_ $$2DRIVER$$aarticle
000180985 3367_ $$2DataCite$$aOutput Types/Journal article
000180985 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000180985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659435079_15548
000180985 3367_ $$2BibTeX$$aARTICLE
000180985 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000180985 3367_ $$00$$2EndNote$$aJournal Article
000180985 500__ $$a#LA:B062# / 2022;2535:187-210
000180985 520__ $$aUnderstanding drug resistance in cancer is paramount to improving patient outcomes, quality of life and reducing toxicities in patients receiving chemotherapy. Pharmacogenomic methods seek to understand the interaction of genomic variation and response to chemotherapeutic treatment. This chapter presents a workflow to interrogate multiple genomic inputs and individually assess their relationship with the phenotype of drug resistance using hierarchical clustering to determine the set of features that can best describe what features are associated with drug resistance. Then in a gene-centric manner regulatory features such as miRNAs, SNPs, or DNA methylation can be related back to the differential expression of genes to give understanding to the mechanism underlying resistance. In this chapter, we describe a computational method that can be adapted to a number of different diseases and phenotypes in which there are multiple genomic data types available with concordant phenotypic drug resistance information.
000180985 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000180985 588__ $$aDataset connected to CrossRef Book Series, PubMed, , Journals: inrepo02.dkfz.de
000180985 650_7 $$2Other$$aComputational biology
000180985 650_7 $$2Other$$aDrug resistance
000180985 650_7 $$2Other$$aIntegrative genomics
000180985 650_7 $$2Other$$aPharmacogenomics
000180985 650_7 $$2Other$$aPolygenomic analysis
000180985 650_2 $$2MeSH$$aDrug Resistance: genetics
000180985 650_2 $$2MeSH$$aGenomics: methods
000180985 650_2 $$2MeSH$$aPharmacogenetics
000180985 650_2 $$2MeSH$$aPhenotype
000180985 650_2 $$2MeSH$$aQuality of Life
000180985 773__ $$0PERI:(DE-600)2493551-7$$a 10.1007/978-1-0716-2513-2_15 $$p187-210$$tMethods in molecular biology$$v2535$$x1064-3745$$y2022
000180985 909CO $$ooai:inrepo02.dkfz.de:180985$$pVDB
000180985 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)50c2928009c788a6a5f3a0708dfb6df5$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000180985 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000180985 9141_ $$y2022
000180985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000180985 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000180985 9202_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000180985 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000180985 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000180985 980__ $$ajournal
000180985 980__ $$aVDB
000180985 980__ $$abook
000180985 980__ $$aI:(DE-He78)B062-20160331
000180985 980__ $$aI:(DE-He78)HD01-20160331
000180985 980__ $$aUNRESTRICTED