000180985 001__ 180985 000180985 005__ 20240229145636.0 000180985 020__ $$a978-1-0716-2512-5 (print) 000180985 020__ $$a978-1-0716-2513-2 (electronic) 000180985 0247_ $$2doi$$a10.1007/978-1-0716-2513-2_15 000180985 0247_ $$2pmid$$apmid:35867232 000180985 0247_ $$2ISSN$$a1064-3745 000180985 0247_ $$2ISSN$$a1940-6029 000180985 0247_ $$2doi$$a 10.1007/978-1-0716-2513-2_15 000180985 037__ $$aDKFZ-2022-01709 000180985 041__ $$aEnglish 000180985 082__ $$a570 000180985 1001_ $$0P:(DE-He78)50c2928009c788a6a5f3a0708dfb6df5$$aAutry, Robert$$b0$$eLast author$$udkfz 000180985 245__ $$aPolygenomic Interrogation of Drug Resistance Genes. 000180985 260__ $$a[Heidelberg]$$b[Springer]$$c2022 000180985 3367_ $$2DRIVER$$aarticle 000180985 3367_ $$2DataCite$$aOutput Types/Journal article 000180985 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook 000180985 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1659435079_15548 000180985 3367_ $$2BibTeX$$aARTICLE 000180985 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000180985 3367_ $$00$$2EndNote$$aJournal Article 000180985 500__ $$a#LA:B062# / 2022;2535:187-210 000180985 520__ $$aUnderstanding drug resistance in cancer is paramount to improving patient outcomes, quality of life and reducing toxicities in patients receiving chemotherapy. Pharmacogenomic methods seek to understand the interaction of genomic variation and response to chemotherapeutic treatment. This chapter presents a workflow to interrogate multiple genomic inputs and individually assess their relationship with the phenotype of drug resistance using hierarchical clustering to determine the set of features that can best describe what features are associated with drug resistance. Then in a gene-centric manner regulatory features such as miRNAs, SNPs, or DNA methylation can be related back to the differential expression of genes to give understanding to the mechanism underlying resistance. In this chapter, we describe a computational method that can be adapted to a number of different diseases and phenotypes in which there are multiple genomic data types available with concordant phenotypic drug resistance information. 000180985 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0 000180985 588__ $$aDataset connected to CrossRef Book Series, PubMed, , Journals: inrepo02.dkfz.de 000180985 650_7 $$2Other$$aComputational biology 000180985 650_7 $$2Other$$aDrug resistance 000180985 650_7 $$2Other$$aIntegrative genomics 000180985 650_7 $$2Other$$aPharmacogenomics 000180985 650_7 $$2Other$$aPolygenomic analysis 000180985 650_2 $$2MeSH$$aDrug Resistance: genetics 000180985 650_2 $$2MeSH$$aGenomics: methods 000180985 650_2 $$2MeSH$$aPharmacogenetics 000180985 650_2 $$2MeSH$$aPhenotype 000180985 650_2 $$2MeSH$$aQuality of Life 000180985 773__ $$0PERI:(DE-600)2493551-7$$a 10.1007/978-1-0716-2513-2_15 $$p187-210$$tMethods in molecular biology$$v2535$$x1064-3745$$y2022 000180985 909CO $$ooai:inrepo02.dkfz.de:180985$$pVDB 000180985 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)50c2928009c788a6a5f3a0708dfb6df5$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000180985 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0 000180985 9141_ $$y2022 000180985 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23 000180985 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23 000180985 9202_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0 000180985 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0 000180985 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1 000180985 980__ $$ajournal 000180985 980__ $$aVDB 000180985 980__ $$abook 000180985 980__ $$aI:(DE-He78)B062-20160331 000180985 980__ $$aI:(DE-He78)HD01-20160331 000180985 980__ $$aUNRESTRICTED