001     181074
005     20240917160323.0
024 7 _ |a 10.1016/j.ejca.2022.06.011
|2 doi
024 7 _ |a pmid:35933885
|2 pmid
024 7 _ |a 0014-2964
|2 ISSN
024 7 _ |a 0959-8049
|2 ISSN
024 7 _ |a 1879-0852
|2 ISSN
024 7 _ |a (1990)
|2 ISSN
024 7 _ |a 1879-2995
|2 ISSN
024 7 _ |a (1965)
|2 ISSN
024 7 _ |a altmetric:133651400
|2 altmetric
037 _ _ |a DKFZ-2022-01758
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Grootes, Isabelle
|b 0
245 _ _ |a Incorporating progesterone receptor expression into the PREDICT breast prognostic model.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1726581777_15212
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a PREDICT Breast
|2 Other
650 _ 7 |a Progesterone receptor
|2 Other
650 _ 7 |a Prognosis
|2 Other
650 _ 7 |a breast cancer
|2 Other
700 1 _ |a Keeman, Renske
|b 1
700 1 _ |a Blows, Fiona M
|b 2
700 1 _ |a Milne, Roger L
|b 3
700 1 _ |a Giles, Graham G
|b 4
700 1 _ |a Swerdlow, Anthony J
|b 5
700 1 _ |a Fasching, Peter A
|b 6
700 1 _ |a Abubakar, Mustapha
|b 7
700 1 _ |a Andrulis, Irene L
|b 8
700 1 _ |a Anton-Culver, Hoda
|b 9
700 1 _ |a Beckmann, Matthias W
|b 10
700 1 _ |a Blomqvist, Carl
|b 11
700 1 _ |a Bojesen, Stig E
|b 12
700 1 _ |a Bolla, Manjeet K
|b 13
700 1 _ |a Bonanni, Bernardo
|b 14
700 1 _ |a Briceno, Ignacio
|b 15
700 1 _ |a Burwinkel, Barbara
|0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
|b 16
700 1 _ |a Camp, Nicola J
|b 17
700 1 _ |a Castelao, Jose E
|b 18
700 1 _ |a Choi, Ji-Yeob
|b 19
700 1 _ |a Clarke, Christine L
|b 20
700 1 _ |a Couch, Fergus J
|b 21
700 1 _ |a Cox, Angela
|b 22
700 1 _ |a Cross, Simon S
|b 23
700 1 _ |a Czene, Kamila
|b 24
700 1 _ |a Devilee, Peter
|b 25
700 1 _ |a Dörk, Thilo
|b 26
700 1 _ |a Dunning, Alison M
|b 27
700 1 _ |a Dwek, Miriam
|b 28
700 1 _ |a Easton, Douglas F
|b 29
700 1 _ |a Eccles, Diana M
|b 30
700 1 _ |a Eriksson, Mikael
|b 31
700 1 _ |a Ernst, Kristina
|b 32
700 1 _ |a Evans, D Gareth
|b 33
700 1 _ |a Figueroa, Jonine D
|b 34
700 1 _ |a Fink, Visnja
|b 35
700 1 _ |a Floris, Giuseppe
|b 36
700 1 _ |a Fox, Stephen
|b 37
700 1 _ |a Gabrielson, Marike
|b 38
700 1 _ |a Gago-Dominguez, Manuela
|b 39
700 1 _ |a García-Sáenz, José A
|b 40
700 1 _ |a González-Neira, Anna
|b 41
700 1 _ |a Haeberle, Lothar
|b 42
700 1 _ |a Haiman, Christopher A
|b 43
700 1 _ |a Hall, Per
|b 44
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 45
|u dkfz
700 1 _ |a Harkness, Elaine F
|b 46
700 1 _ |a Hartman, Mikael
|b 47
700 1 _ |a Hein, Alexander
|b 48
700 1 _ |a Hooning, Maartje J
|b 49
700 1 _ |a Hou, Ming-Feng
|b 50
700 1 _ |a Howell, Sacha J
|b 51
700 1 _ |a Investigators, ABCTB
|b 52
|e Collaboration Author
700 1 _ |a Investigators, kConFab
|b 53
|e Collaboration Author
700 1 _ |a Ito, Hidemi
|b 54
700 1 _ |a Jakubowska, Anna
|b 55
700 1 _ |a Janni, Wolfgang
|b 56
700 1 _ |a John, Esther M
|b 57
700 1 _ |a Jung, Audrey
|0 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
|b 58
|u dkfz
700 1 _ |a Kang, Daehee
|b 59
700 1 _ |a Kristensen, Vessela N
|b 60
700 1 _ |a Kwong, Ava
|b 61
700 1 _ |a Lambrechts, Diether
|b 62
700 1 _ |a Li, Jingmei
|b 63
700 1 _ |a Lubiński, Jan
|b 64
700 1 _ |a Manoochehri, Mehdi
|0 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
|b 65
700 1 _ |a Margolin, Sara
|b 66
700 1 _ |a Matsuo, Keitaro
|b 67
700 1 _ |a Taib, Nur Aishah Mohd
|b 68
700 1 _ |a Mulligan, Anna Marie
|b 69
700 1 _ |a Nevanlinna, Heli
|b 70
700 1 _ |a Newman, William G
|b 71
700 1 _ |a Offit, Kenneth
|b 72
700 1 _ |a Osorio, Ana
|b 73
700 1 _ |a Park, Sue K
|b 74
700 1 _ |a Park-Simon, Tjoung-Won
|b 75
700 1 _ |a Patel, Alpa V
|b 76
700 1 _ |a Presneau, Nadege
|b 77
700 1 _ |a Pylkäs, Katri
|b 78
700 1 _ |a Rack, Brigitte
|b 79
700 1 _ |a Radice, Paolo
|b 80
700 1 _ |a Rennert, Gad
|b 81
700 1 _ |a Romero, Atocha
|b 82
700 1 _ |a Saloustros, Emmanouil
|b 83
700 1 _ |a Sawyer, Elinor J
|b 84
700 1 _ |a Schneeweiss, Andreas
|b 85
700 1 _ |a Schochter, Fabienne
|b 86
700 1 _ |a Schoemaker, Minouk J
|b 87
700 1 _ |a Shen, Chen-Yang
|b 88
700 1 _ |a Shibli, Rana
|b 89
700 1 _ |a Sinn, Peter
|b 90
700 1 _ |a Tapper, William J
|b 91
700 1 _ |a Tawfiq, Essa
|b 92
700 1 _ |a Teo, Soo Hwang
|b 93
700 1 _ |a Teras, Lauren R
|b 94
700 1 _ |a Torres, Diana
|0 P:(DE-HGF)0
|b 95
700 1 _ |a Vachon, Celine M
|b 96
700 1 _ |a van Deurzen, Carolien H M
|b 97
700 1 _ |a Wendt, Camilla
|b 98
700 1 _ |a Williams, Justin A
|b 99
700 1 _ |a Winqvist, Robert
|b 100
700 1 _ |a Elwood, Mark
|b 101
700 1 _ |a Schmidt, Marjanka K
|b 102
700 1 _ |a García-Closas, Montserrat
|b 103
700 1 _ |a Pharoah, Paul D P
|b 104
773 _ _ |a 10.1016/j.ejca.2022.06.011
|g Vol. 173, p. 178 - 193
|0 PERI:(DE-600)1468190-0
|p 178 - 193
|t European journal of cancer
|v 173
|y 2022
|x 0014-2964
909 C O |p VDB
|o oai:inrepo02.dkfz.de:181074
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 45
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 58
|6 P:(DE-He78)bce1fdec5ce564e2666156d96aeabec9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 65
|6 P:(DE-He78)16b8745cffb0db0d366978d3afe17ebc
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 95
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-30
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J CANCER : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-30
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EUR J CANCER : 2021
|d 2022-11-30
920 1 _ |0 I:(DE-He78)C080-20160331
|k C080
|l Molekulare Epidemiologie
|x 0
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 1
920 1 _ |0 I:(DE-He78)B070-20160331
|k B070
|l B070 Funktionelle Genomanalyse
|x 2
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C080-20160331
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a I:(DE-He78)B070-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21