000181081 001__ 181081
000181081 005__ 20240229145639.0
000181081 0247_ $$2doi$$a10.1016/j.annepidem.2022.07.012
000181081 0247_ $$2pmid$$apmid:35940393
000181081 0247_ $$2ISSN$$a1047-2797
000181081 0247_ $$2ISSN$$a1873-2585
000181081 0247_ $$2altmetric$$aaltmetric:134125633
000181081 037__ $$aDKFZ-2022-01765
000181081 041__ $$aEnglish
000181081 082__ $$a610
000181081 1001_ $$aJaeschke, Lina$$b0
000181081 245__ $$aThe bias from heaping on risk estimation: Effect of age at diagnosis of hypertension on risk of subsequent cardiovascular comorbidities.
000181081 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000181081 3367_ $$2DRIVER$$aarticle
000181081 3367_ $$2DataCite$$aOutput Types/Journal article
000181081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1662472448_14975
000181081 3367_ $$2BibTeX$$aARTICLE
000181081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000181081 3367_ $$00$$2EndNote$$aJournal Article
000181081 500__ $$a2022 Aug 5;74:84-96
000181081 520__ $$aTo investigate (1) the bias in effect estimation due to heaping, (2) the association between age at hypertension diagnosis and risk of cardiovascular comorbidities, and (3) the influence of heaping on risk estimates.We performed a simulation study with various scenarios, binary outcome, and normal or lognormal distributed covariables. We calculated mean logistic coefficients under the original and heaped data and their relative deviation. The association of age at hypertension diagnosis and risk of ≥1 cardiovascular comorbidity was investigated using logistic regression among 50,858 participants in the NAKO Gesundheitsstudie (German National Cohort) who reported such diagnosis. We assessed the proportion of heaped observations and to what extent heaping may have influenced risk estimates.Based on the simulation study and assuming 50% of observations in the variable of interest to be heaped, relative bias was <6%. In NAKO, a 5-year younger age at hypertension diagnosis was associated with a 15% increased risk of having ≥1 cardiovascular comorbidity. Observed heaping in age at hypertension diagnosis was 12.6%, and bias of the risk estimate was 0.14%.Bias in effect estimation due to heaping is low in most common scenarios. Younger age at hypertension diagnosis is associated with a higher risk of cardiovascular comorbidities.
000181081 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000181081 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000181081 650_7 $$2Other$$acardiovascular comorbidities
000181081 650_7 $$2Other$$adigit preference
000181081 650_7 $$2Other$$aeffect estimates
000181081 650_7 $$2Other$$aepidemiologic study
000181081 650_7 $$2Other$$aheaping
000181081 650_7 $$2Other$$ahypertension
000181081 650_7 $$2Other$$asimulation study
000181081 7001_ $$aBecher, Matthias$$b1
000181081 7001_ $$aVelásquez, Ilais Moreno$$b2
000181081 7001_ $$aAhrens, Wolfgang$$b3
000181081 7001_ $$aBächle, Christina$$b4
000181081 7001_ $$aBaurecht, Hansjörg$$b5
000181081 7001_ $$aFricke, Julia$$b6
000181081 7001_ $$0P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aGreiser, Karin Halina$$b7$$udkfz
000181081 7001_ $$aGünther, Kathrin$$b8
000181081 7001_ $$aHeier, Margit$$b9
000181081 7001_ $$aKarch, André$$b10
000181081 7001_ $$aKluttig, Alexander$$b11
000181081 7001_ $$aKrist, Lilian$$b12
000181081 7001_ $$aLeitzmann, Michael$$b13
000181081 7001_ $$aMichels, Karin$$b14
000181081 7001_ $$aMikolajczyk, Rafael$$b15
000181081 7001_ $$aPeters, Annette$$b16
000181081 7001_ $$aSchipf, Sabine$$b17
000181081 7001_ $$aVölzke, Henry$$b18
000181081 7001_ $$aPischon, Tobias$$b19
000181081 7001_ $$aBecher, Heiko$$b20
000181081 773__ $$0PERI:(DE-600)2003468-4$$a10.1016/j.annepidem.2022.07.012$$gp. S1047279722001557$$p84-96$$tAnnals of epidemiology$$v74$$x1047-2797$$y2022
000181081 909CO $$ooai:inrepo02.dkfz.de:181081$$pVDB
000181081 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e0ac0d57cdb66d87f2d95ae5f6178c1b$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000181081 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000181081 9141_ $$y2022
000181081 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000181081 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000181081 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000181081 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANN EPIDEMIOL : 2021$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000181081 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bANN EPIDEMIOL : 2021$$d2022-11-12
000181081 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000181081 980__ $$ajournal
000181081 980__ $$aVDB
000181081 980__ $$aI:(DE-He78)C020-20160331
000181081 980__ $$aUNRESTRICTED