000181143 001__ 181143 000181143 005__ 20240229145641.0 000181143 0247_ $$2doi$$a10.1002/ijc.34243 000181143 0247_ $$2pmid$$apmid:35962946 000181143 0247_ $$2ISSN$$a0020-7136 000181143 0247_ $$2ISSN$$a1097-0215 000181143 0247_ $$2altmetric$$aaltmetric:134056253 000181143 037__ $$aDKFZ-2022-01796 000181143 041__ $$aEnglish 000181143 082__ $$a610 000181143 1001_ $$00000-0002-9856-8563$$aHofmann, Wolf-K$$b0 000181143 245__ $$aTherapy Resistance Mechanisms in Hematological Malignancies. 000181143 260__ $$aBognor Regis$$bWiley-Liss$$c2023 000181143 3367_ $$2DRIVER$$aarticle 000181143 3367_ $$2DataCite$$aOutput Types/Journal article 000181143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671445454_16478$$xReview Article 000181143 3367_ $$2BibTeX$$aARTICLE 000181143 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000181143 3367_ $$00$$2EndNote$$aJournal Article 000181143 500__ $$a2023 Feb 1;152(3):340-347 000181143 520__ $$aHematologic malignancies are model diseases for understanding neoplastic transformation and serve as prototypes for developing effective therapies. Indeed, the concept of systemic cancer therapy originated in hematologic malignancies and has guided the development of chemotherapy, cellular therapies, immunotherapy, and modern precision oncology. Despite significant advances in the treatment of leukemias, lymphomas and multiple myelomas, treatment resistance associated with molecular and clinical relapse remains very common. Therapy of relapsed and refractory disease remains extremely difficult, and failure of disease control at this stage remains the leading cause of mortality in patients with hematologic malignancies. In recent years, many efforts have been made to identify the genetic and epigenetic mechanisms that drive the development of hematologic malignancies to the stage of full-blown disease requiring clinical intervention. In contrast, the mechanisms responsible for treatment resistance in hematologic malignancies remain poorly understood. For example, the molecular characteristics of therapy-resistant persisting cells in minimal residual disease (MRD) remain rather elusive. In this mini-review we want to discuss that cellular heterogeneity and plasticity, together with adaptive genetic and epigenetic processes, lead to reduced sensitivity to various treatment regimens such as chemotherapy and pathway inhibitors such as tyrosine kinase inhibitors. However, resistance mechanisms may be conserved across biologically distinct cancer entities. Recent technological advances have made it possible to explore the underlying mechanisms of therapy resistance with unprecedented resolution and depth. These include novel multi-omics technologies with single cell resolution combined with advanced biocomputational approaches, along with artificial intelligence (AI), and sophisticated disease models for functional validation. This article is protected by copyright. All rights reserved. 000181143 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0 000181143 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000181143 650_7 $$2Other$$aHematological malignancies 000181143 650_7 $$2Other$$aMechanisms 000181143 650_7 $$2Other$$aResistance 000181143 650_7 $$2Other$$aTherapy 000181143 7001_ $$0P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2$$aTrumpp, Andreas$$b1$$udkfz 000181143 7001_ $$aMüller-Tidow, Carsten$$b2 000181143 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.34243$$gp. ijc.34243$$n3$$p340-347$$tInternational journal of cancer$$v152$$x0020-7136$$y2023 000181143 909CO $$ooai:inrepo02.dkfz.de:181143$$pVDB 000181143 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)732f4fbcddb0042251aa759a2e74d3b2$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000181143 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0 000181143 9141_ $$y2022 000181143 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-04$$wger 000181143 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04 000181143 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-04 000181143 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04 000181143 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger 000181143 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2022$$d2023-10-21 000181143 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J CANCER : 2022$$d2023-10-21 000181143 9201_ $$0I:(DE-He78)A010-20160331$$kA010$$lA010 Stammzellen und Krebs$$x0 000181143 9201_ $$0I:(DE-He78)V960-20160331$$kV960$$lHI-Stem$$x1 000181143 980__ $$ajournal 000181143 980__ $$aVDB 000181143 980__ $$aI:(DE-He78)A010-20160331 000181143 980__ $$aI:(DE-He78)V960-20160331 000181143 980__ $$aUNRESTRICTED