001     181146
005     20240229145641.0
024 7 _ |a 10.1186/s12885-022-09989-0
|2 doi
024 7 _ |a pmid:35962322
|2 pmid
037 _ _ |a DKFZ-2022-01799
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ambrozkiewicz, Filip
|b 0
245 _ _ |a CTNNB1 mutations, TERT polymorphism and CD8+ cell densities in resected hepatocellular carcinoma are associated with longer time to recurrence.
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660555963_27718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:C020#
520 _ _ |a Hepatocellular carcinoma (HCC) is a fatal disease characterized by early genetic alterations in telomerase reverse transcriptase promoter (TERTp) and β-catenin (CTNNB1) genes and immune cell activation in the tumor microenvironment. As a novel approach, we wanted to assess patient survival influenced by combined presence of mutations and densities of CD8+ cytotoxic T cells.Tissue samples were obtained from 67 HCC patients who had undergone resection. We analysed CD8+ T cells density, TERTp mutations, rs2853669 polymorphism, and CTNNB1 mutations. These variables were evaluated for time to recurrence (TTR) and disease free survival (DFS).TERTp mutations were found in 75.8% and CTNNB1 mutations in 35.6% of the patients. TERTp mutations were not associated with survival but polymorphism rs2853669 in TERTp was associated with improved TTR and DFS. CTNNB1 mutations were associated with improving TTR. High density of CD8+ T-lymphocytes in tumor center and invasive margin correlated with longer TTR and DFS. Combined genetic and immune factors further improved survival showing higher predictive values. E.g., combining CTNNB1 mutations and high density of CD8+ T-lymphocytes in tumor center yielded HRs of 0.12 (0.03-0.52), p = 0.005 for TTR and 0.25 (0.09-0.74), p = 0.01 for DFS.The results outline a novel integrative approach for prognostication through combining independent predictive factors from genetic and immune cell profiles. However, larger studies are needed to explore multiple cell types in the tumor microenvironment.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CD8+ cells
|2 Other
650 _ 7 |a Hepatocellular carcinoma
|2 Other
650 _ 7 |a TERT promoter
|2 Other
650 _ 7 |a rs2853669
|2 Other
650 _ 7 |a β-Catenin
|2 Other
700 1 _ |a Trailin, Andriy
|b 1
700 1 _ |a Červenková, Lenka
|b 2
700 1 _ |a Vaclavikova, Radka
|b 3
700 1 _ |a Hanicinec, Vojtech
|b 4
700 1 _ |a Allah, Mohammad Al Obeed
|b 5
700 1 _ |a Palek, Richard
|b 6
700 1 _ |a Třeška, Vladislav
|b 7
700 1 _ |a Daum, Ondrej
|b 8
700 1 _ |a Tonar, Zbyněk
|b 9
700 1 _ |a Liška, Václav
|b 10
700 1 _ |a Hemminki, Kari
|0 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1186/s12885-022-09989-0
|g Vol. 22, no. 1, p. 884
|0 PERI:(DE-600)2041352-X
|n 1
|p 884
|t BMC cancer
|v 22
|y 2022
|x 1471-2407
909 C O |o oai:inrepo02.dkfz.de:181146
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-14T16:18:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-14T16:18:36Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2021-02-14T16:18:36Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-19
920 2 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21