001     181223
005     20240301130851.0
024 7 _ |a 10.1523/JNEUROSCI.2161-17.2017
|2 doi
024 7 _ |a pmid:29118105
|2 pmid
024 7 _ |a pmc:PMC6596824
|2 pmc
024 7 _ |a 0270-6474
|2 ISSN
024 7 _ |a 1529-2401
|2 ISSN
024 7 _ |a altmetric:28717809
|2 altmetric
037 _ _ |a DKFZ-2022-01871
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Grund, Thomas
|b 0
245 _ _ |a Neuropeptide S Activates Paraventricular Oxytocin Neurons to Induce Anxiolysis.
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1660725330_27718
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance
520 _ _ |a Neuropeptides, such as neuropeptide S (NPS) and oxytocin (OXT), represent potential options for the treatment of anxiety disorders due to their potent anxiolytic profile. In this study, we aimed to reveal the mechanisms underlying the behavioral action of NPS, and present a chain of evidence that the effects of NPS within the hypothalamic paraventricular nucleus (PVN) are mediated via actions on local OXT neurons in male Wistar rats. First, retrograde studies identified NPS fibers originating in the brainstem locus coeruleus, and projecting to the PVN. FACS identified prominent NPS receptor expression in PVN-OXT neurons. Using genetically encoded calcium indicators, we further demonstrated that NPS reliably induces a transient increase in intracellular Ca2+ concentration in a subpopulation of OXT neurons, an effect mediated by NPS receptor. In addition, intracerebroventricular (i.c.v.) NPS evoked a significant somatodendritic release of OXT within the PVN as assessed by microdialysis in combination with a highly sensitive radioimmunoassay. Finally, we could show that the anxiolytic effect of NPS seen after i.c.v. or intra-PVN infusion requires responsive OXT neurons of the PVN and locally released OXT. Thus, pharmacological blockade of OXT receptors as well as chemogenetic silencing of OXT neurons within the PVN prevented the effect of synthetic NPS. In conclusion, our results indicate a significant role of the OXT system in mediating the effects of NPS on anxiety, and fill an important gap in our understanding of brain neuropeptide interactions in the context of regulation of emotional behavior within the hypothalamus.SIGNIFICANCE STATEMENT Given the rising scientific interest in neuropeptide research in the context of emotional and stress-related behaviors, our findings demonstrate a novel intrahypothalamic mechanism involving paraventricular oxytocin neurons that express the neuropeptide S receptor. These neurons respond with transient Ca2+ increase and somatodendritic oxytocin release following neuropeptide S stimulation. Thereby, oxytocin neurons seem essential for neuropeptide S-induced anxiolysis, as this effect was blocked by pharmacological and chemogenetic inhibition of the oxytocin system.
536 _ _ |a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|0 G:(DE-HGF)POF3-311
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DREADD
|2 Other
650 _ 7 |a GCaMP6s
|2 Other
650 _ 7 |a anxiety
|2 Other
650 _ 7 |a microdialysis
|2 Other
650 _ 7 |a neuropeptide S
|2 Other
650 _ 7 |a oxytocin
|2 Other
650 _ 7 |a Bacterial Proteins
|2 NLM Chemicals
650 _ 7 |a Luminescent Proteins
|2 NLM Chemicals
650 _ 7 |a Neuropeptides
|2 NLM Chemicals
650 _ 7 |a Receptors, Neuropeptide
|2 NLM Chemicals
650 _ 7 |a Receptors, Oxytocin
|2 NLM Chemicals
650 _ 7 |a neuropeptide S receptor, rat
|2 NLM Chemicals
650 _ 7 |a neuropeptide S, rat
|2 NLM Chemicals
650 _ 7 |a oxytocin receptor, rat
|2 NLM Chemicals
650 _ 7 |a red fluorescent protein
|2 NLM Chemicals
650 _ 7 |a yellow fluorescent protein, Bacteria
|2 NLM Chemicals
650 _ 7 |a Oxytocin
|0 50-56-6
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Anxiety: physiopathology
|2 MeSH
650 _ 2 |a Axonal Transport
|2 MeSH
650 _ 2 |a Bacterial Proteins: analysis
|2 MeSH
650 _ 2 |a Calcium Signaling: physiology
|2 MeSH
650 _ 2 |a Dependovirus: genetics
|2 MeSH
650 _ 2 |a Exploratory Behavior: drug effects
|2 MeSH
650 _ 2 |a Genes, Reporter
|2 MeSH
650 _ 2 |a Genetic Vectors
|2 MeSH
650 _ 2 |a Luminescent Proteins: analysis
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Microdialysis
|2 MeSH
650 _ 2 |a Motor Activity: drug effects
|2 MeSH
650 _ 2 |a Neuropeptides: pharmacology
|2 MeSH
650 _ 2 |a Neuropeptides: physiology
|2 MeSH
650 _ 2 |a Oxytocin: agonists
|2 MeSH
650 _ 2 |a Oxytocin: physiology
|2 MeSH
650 _ 2 |a Paraventricular Hypothalamic Nucleus: drug effects
|2 MeSH
650 _ 2 |a Paraventricular Hypothalamic Nucleus: physiology
|2 MeSH
650 _ 2 |a Rats
|2 MeSH
650 _ 2 |a Rats, Wistar
|2 MeSH
650 _ 2 |a Receptors, Neuropeptide: drug effects
|2 MeSH
650 _ 2 |a Receptors, Neuropeptide: physiology
|2 MeSH
650 _ 2 |a Receptors, Oxytocin: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Receptors, Oxytocin: physiology
|2 MeSH
650 _ 2 |a Synaptic Transmission: drug effects
|2 MeSH
700 1 _ |a Goyon, Stephanie
|b 1
700 1 _ |a Li, Yuting
|0 P:(DE-He78)262728a22f16ad48aa602f831de92936
|b 2
700 1 _ |a Eliava, Marina
|b 3
700 1 _ |a Liu, Haikun
|0 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
|b 4
|u dkfz
700 1 _ |a Charlet, Alexandre
|0 0000-0003-4837-3706
|b 5
700 1 _ |a Grinevich, Valery
|0 P:(DE-He78)b2142a2557ce071790760d0126e259d3
|b 6
700 1 _ |a Neumann, Inga D
|b 7
773 _ _ |a 10.1523/JNEUROSCI.2161-17.2017
|g Vol. 37, no. 50, p. 12214 - 12225
|0 PERI:(DE-600)1475274-8
|n 50
|p 12214 - 12225
|t The journal of neuroscience
|v 37
|y 2017
|x 0270-6474
909 C O |o oai:inrepo02.dkfz.de:181223
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)262728a22f16ad48aa602f831de92936
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)76aeb2431f7458c9261e69c5420390c6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)b2142a2557ce071790760d0126e259d3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-311
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Signalling pathways, cell and tumor biology
|x 0
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROSCI : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROSCI : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-He78)A240-20160331
|k A240
|l A240 Molekulare Neurogenetik
|x 0
920 1 _ |0 I:(DE-He78)V078-20160331
|k V078
|l AG Neuropeptide
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A240-20160331
980 _ _ |a I:(DE-He78)V078-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21